AUTOMATES

Jeudi 7 janvier

Option Informatique

Ecole Alsacienne

PLAN

- 1. Motivations
- 2. Alphabets et langages
- 3. Expressions rationnelles
- 4. Automates finis déterministes
- 5. Automates finis non déterministes
- 6. ε-Transitions
- 7. Minimisation
- 8. Automates finis et expressions rationnelles

MOTIVATIONS

QUELQUES LIGNES DE CODE

Que fait le code ci-dessous ?

```
x = 1
for i in range(10):
x = i + x * 2 + 1
print(x)
```

Comment en êtes-vous arrivés à ces conclusions ?

```
x = 1
for i in range(10):
    x = i + x * 2 + 1
print(x)
```

QUELQUES LIGNES DE CODE

```
x = 1
for i in range(10):
    x = i + x * 2 + 1
print(x)
```

- Ces quelques lignes de codes contiennent beaucoup d'informations :
 - Noms de variables
 - Noms de fonctions
 - Valeurs numériques
 - Déclaration de boucle et corps de boucle
 - Symboles divers (parenthèses, opérateurs, signe d'égalité)
 - Priorité entre opérateurs (le * intervient avant le +)

QUELQUES LIGNES DE CODE

```
x = 1
for i in range(10):
    x = i + x * 2 + 1
print(x)
```

- Avec l'habitude, vous déduisez toutes ces informations sans même y penser.
- Question : Comment un ordinateur est-il capable d'effectuer cette même analyse ?

SYNTAX ERROR

Que fait le code ci-dessous ?

- Réponse : Il plante !
 - Il manque un deux-points après range (10)
 - Il manque un symbole entre i et x
 - L'instruction print (i) est mal indentée
 - Il y a une parenthèse en trop sur la dernière ligne
- Question : Comment un ordinateur est-il capable d'identifier une erreur de syntaxe ?

ANALYSE SYNTAXIQUE

- L'analyse syntaxique consiste à étudier une suite de symboles pour essayer d'en déduire la structure et le sens
- Cette analyse permet en outre de détecter certaines erreurs (ex : symbole oublié)
- Remarque: Les erreurs de syntaxe ne sont pas les seules possibles; même si la syntaxe est valide, un programme ne fait pas forcément ce que l'on croît.

```
x = 1
for i in range(10):
    x = i + x * 2 + 1
    print(x)
```

LIENS AVEC LES LANGAGES NATURELS

- La notion d'analyse syntaxique existe également avec les langages naturels.
- Là encore, il s'agit de donner du sens à une suite de symboles.
 - Exemple : Il y a deux réponses à cette question.
 - L'esprit tente d'identifier un verbe, un sujet, des compléments, etc.
- Il est également possible de faire des erreurs :
 - Fautes d'orthographe : Il y a deux réponse à cet question.
 - Construction incorrecte : Il y a réponses deux à cette question.
 - Etc.

LIENS AVEC LES LANGAGES NATURELS

- Cette analyse est très complexe pour les langages naturels
 - Un pan entier de la recherche en informatique y est consacré
 - Exemples de thématique :
 - extraction du sens
 - traduction
 - analyse des sentiments
- Mais les difficultés sont nombreuses :
 - Polysémie : Les poules du couvent couvent.
 - Négation : Nul n'est censé ignorer la loi.
 - Ironie: Quel splendide temps normand!
 - Expressions figurées : Il pleut des cordes.
 - Fautes d'orthographe : *Je pnese donc je ssuis*.
 - Tournures inattendues : Toujours par deux ils vont.
 - Etc.

RECHERCHE DE MOTIF

- Question : Comment chercher la présence des termes suivants dans un texte ?
 - Mots qui commencent par la lettre A ?
 - Mots de 3 lettres qui comment par la lettre A ?
 - Mots qui commencent par la lettre A et qui se terminent par ENT ?
 - Mots composés d'exactement 5 chiffres ?
 - Mots construits selon le modèle suivant [nom]@[domaine].[extension]

RECHERCHE DE MOTIF

- Exemples d'utilisation :
 - Rechercher des séquences de nucléotides dans un brin d'ADN (par exemple pour détecter des maladies)
 - Retrouver un code postal dans un gros volume de texte
 - Vérifier qu'une chaîne de caractères entrée par un utilisateur correspond bien à un email
 - Remplacer des centaines d'occurrences d'un seul coup Exemple : EA_prenom_nom.doc devient EA_nom_prenom.doc
 - Etre capable d'exploiter toute la puissance des expressions régulières

Une nouvelle séquence

- Tous ces sujets sont en fait liés à une notion très utile en informatique : les langages rationnels.
- Vous avez peut-être rencontré certains termes qui se rapprochent de cette idée :
 - Langages réguliers
 - Expressions rationnelles
 - Expressions régulières ("regex")
 - Automates finis (déterministes ou non)
- C'est justement le thème de cette nouvelle séquence !

ALPHABETS ET LANGAGES

ALPHABETS

- Il existe de nombreux alphabets :
 - ABCDE
 - αβγδε
 - ج ٽ ت ب ا
 - 你说汉语吗

 - etc.

DÉFINITIONS

- Un alphabet est un ensemble fini de symboles
 - Par convention, cet alphabet est souvent noté Σ
- Un mot sur l'alphabet Σ est une suite finie (eventuellement vide) d'éléments de Σ .
- Par convention, le mot vide est noté ε .
- La longueur d'un mot u est notée |u|.
 - On a notamment $|\varepsilon| = 0$

Nombre d'occurrences

- Le nombre d'occurrence du symbole a dans le mot u est noté $|u|_a$
- Propriété directe :

$$|u| = \sum_{a \in \Sigma} |u|_a$$

- On note a^n le mot composé de n occurrences du symbole a
 - On a notamment $a^0 = \varepsilon$
- La concaténation des mots u et v est notée uv.

LANGAGES

- L'ensemble de tous les mots formés à partir de l'alphabet Σ est noté Σ^* .
- L'ensemble de tous les mots non vides formés à partir de l'alphabet Σ est noté Σ^+ .
- Un langage sur l'alphabet Σ est un sous-ensemble de Σ^{\star}
 - Par convention, un langage est souvent noté L, ou L_1 , etc.

Premiers exemples de langages

- Considérons l'alphabet $\Sigma = \{a, b\}$.
- Les exemples ci-dessous sont tous des langages sur cet alphabet Σ :
 - Σ^* : Tous les mots composés des lettres a ou b (y compris le mot vide)
 - $L_1 = \{aa, ab, ba, bb\}$: Tous les mots de longueur 2
 - $L_2 = \{ab, aab, abb, aaab, ...\}$: Tous les mots qui commencent par a et qui se terminent par b
 - $L_3 = \{a^nb^n \mid n \ge 0\}$: Tous les mots composés d'une succession de a puis du même nombre de b
 - $L_4 = \{(aa)^n | n \ge 0\}$: Tous les mots composés d'un nombre pair de a (ce qui inclut le mot vide)

DES POSSIBILITÉS INFINIES

- Un alphabet est un ensemble fini de symboles
- Pourtant,
 - Il existe une infinité de mots pour un alphabet donné
 - Il existe une infinité de langages sur un alphabet donné
- Un langage fini est un langage qui contient un nombre fini de mots
 - Exemple : $L_1 = \{aa, ab, ba, bb\}$: Tous les mots de longueur 2
 - En général, les langages étudiés contiennent un nombre infini de mots

OPÉRATIONS ENSEMBLISTES

- L'union de deux langages L_1 et L_2 est le langage constitué des mots appartenant à L_1 ou à L_2
 - C'est un "OU" non exclusif
 - Cette union est souvent notée L₁ ∪ L₂
- L'intersection de deux langages L_1 et L_2 est le langage constitué des mots appartenant à la fois à L_1 et à L_2
 - Cette intersection est souvent notée $L_1 \cap L_2$
- Le complémentaire (dans Σ^*) d'un langage L est le langage constitué de l'ensemble des mots n'appartenant pas à L.
 - Ce complémentaire est souvent noté $ar{L}$

OPÉRATIONS ENSEMBLISTES

- Pour tout langage L sur Σ^* , on a
 - $\overline{L} \cup L = \Sigma^*$
 - $\overline{L} \cap L = \emptyset$ (ensemble vide)
- La concaténation de deux langages L_1 et L_2 est le langage constitué des mots formés d'un mot de L_1 suivi d'un mot de L_2
 - Cette concaténation est souvent notée L_1L_2
 - Formellement, $L_1L_2 = \{uv \mid u \in L_1, v \in L_2\}$

OPÉRATIONS ENSEMBLISTES

- Si L est un langage, le langage L^n est le langage constitué des mots formés de n mots de L
 - Formellement, $L^n=\{u=u_1u_2\cdots u_n\mid u_1\in L, u_2\in L, \cdots, u_n\in L\}$
 - On a notamment $L^0 = \{\varepsilon\}$
 - A ne pas confondre avec le langage $\{u=v^n\mid v\in L\}$ (qui ne contient que les puissances n^{ièmes} des mots de L)
- L'étoile (aussi appelée fermeture de Kleene) d'un langage L est notée L*, et est définie par

$$L^{\star} = \bigcup_{i \ge 0} L^i$$

 L* contient donc tous les mots qu'il est possible de construire en concaténant un nombre fini de mots de L.

EXPRESSIONS RATIONNELLES

DÉFINITION RÉCURSIVE

- Les expressions rationnelles sur un alphabet Σ sont définies de la façon suivante :
 - L'ensemble vide Ø est une expression rationnelle
 - Le mot vide arepsilon est une expression rationnelle
 - Pour tout symbole $a \in \Sigma$, a est une expression rationnelle
 - Si e_1 et e_2 sont des expressions rationnelles,
 - L'union $e_1 + e_2$ est une expression rationnelle
 - La concaténation e_1e_1 est une expression rationnelle
 - L'étoile e_1^* est une expression rationnelle

Remarques :

- C'est une définition récursive
- A chaque expression régulière peut être associé un langage

PREMIER EXEMPLE

- Alphabet : $\Sigma = \{a, e, f, i, r\}$.
- Les exemples ci-dessous sont autant d'expressions rationnelles :
 - a, e, f, i, r : langages constitués d'un seul symbole
 - (fa) : langage constitué du mot fa, concaténation de f et a
 - (((fa)i)r)e): langage constitué du mot faire
 - *(re)* : langage constitué du mot *re*
 - (re)*: langage constitué des concaténations d'un nombre fini de mots de (re)
 - C'est-à-dire ε, re, rere, rerere, etc.
 - $(re)^*(((fa)i)r)e)$: langage constitué d'un certain nombre d'occurrence du préfixe re, suivi du mot faire
 - C'est-à-dire faire, refaire, rerefaire, rerefaire, etc.

CONVENTION D'ÉCRITURE

- Dans un souci de lisibilité, on utilise souvent les conventions suivantes :
 - L'étoile (*) est prioritaire sur tous les autres opérateurs
 - La concaténation (·) est prioritaire sur l'union (+)
- Cela permet de supprimer de nombreuses parenthèses pour alléger la lecture
 - $(re)^*(((fa)i)r)e)$ devient $(re)^*faire$
 - $(((ba)(a)^*)(b)^*)b$ devient baa^*b^*b
 - etc.

EXPRESSIONS ET LANGAGES

- Question : Quels sont les langages représentés par les expressions rationnelles ci-dessous :
 - $a(a+b)^*b$
 - $a(a^*b^*)^*b$
 - $a(a^*b)^*a^*b$
- Deux expressions peuvent représenter le même langage !
- Il est parfois possible de simplifier une expression rationnelle
 Si e est une expression rationnelle,
 - e + e = e
 - $(e^*)^* = e^*$
 - etc.

EXERCICES

- Exercice 1 : A quoi correspondent les expressions rationnelles suivantes sur l'alphabet $\Sigma = \{a, b, c\}$.
 - $1. \qquad a(a+b+c)^*$
 - $(a + bb + c)^*$
 - (a+b+c)(a+b+c)
- Exercice 2 : Peut-on trouver une expression rationnelle pour décrire les langages suivants ?
 - 1. Mots qui ne commencent pas par a
 - 2. Mots qui contiennent un nombre impair de c
 - 3. Mots qui contiennent exactement 3 a
 - 4. Mots qui contiennent autant de b que de c

EXPRESSIONS RÉGULIÈRES

- On parle également souvent d'expressions régulières.
- Ces expressions ressemblent aux expressions rationnelles, avec plusieurs symboles supplémentaires :
 - ^ début de ligne
 - \$ fin de ligne
 - \d n'importe quel chiffre
 - \D n'importe quel caractère autre qu'un chiffre
 - \w n'importe quel caractère alphabétique (lettre, chiffre, underscore)
 - c{n} le caractère c exactement n fois
 - etc.

EXPRESSIONS RÉGULIÈRES

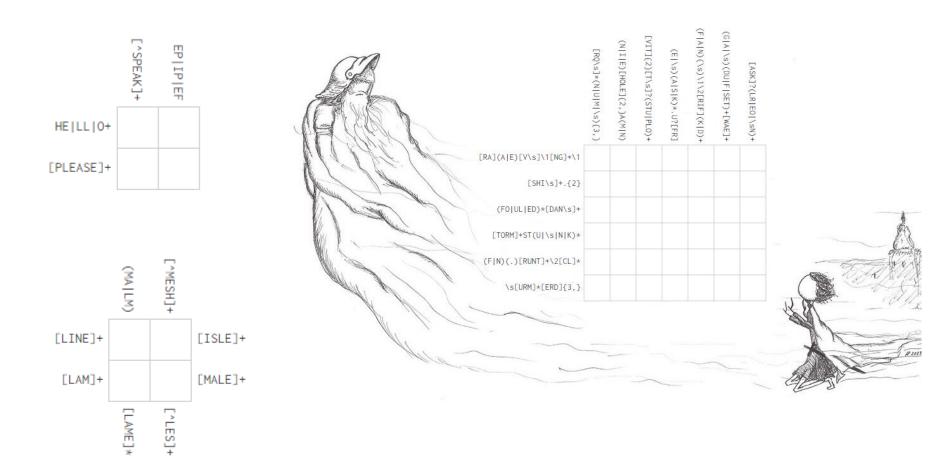
- Ces expressions régulières incluent également la notion de "regroupement".
- On peut ainsi
 - "Capturer" une partie d'un motif
 - Vérifier qu'un même sous-motif apparaît plusieurs fois (répétition)
 - Vérifier qu'un sous-motif n'apparaît pas
 - etc.
- Les expressions régulières sont un outil extrêmement puissant
 - Elles permettent de faire efficacement de nombreux traitements
 - Au point qu'elles sont parfois considérées comme une science à part entière!

EXPRESSIONS RÉGULIÈRES - EXEMPLES

- Code postal français
 - 5 caractères de type "chiffre"
 - Expression régulière : \d{5}
- Email correctement formaté
 - Format attendu email@domaine.ext
 - Expression régulière : \w+@\w+\.\w+
 - Vraie expression régulière (RFC 822)

 $(?:(?:\r\n)?[\t])*(?:(?:(?:(?:(?:(?:\r\n)?[\t])*(?:(?:(?:\r\n)?[\t])*(?:(?:\t)?[\t])*(?$)+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?: $\begin{array}{lll} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$ $31] + (?:(?:(?:\r\n)?[\t]) + |\Z|(?=[\["()<>0,;:\".\[\]])) |\[([^\[\]\r\])|\.) * \)$](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\]\000-\031]+ $(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>0,;:\\".\[]]))|\[([^{[]\r\]|\\.)*\](?:$ $(?:\r\n)?[\t])*))*|(?:[^()<>@,;:\\".\[\] \ \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z_{(?:\r\n)}$ +|\Z_{(?:\r\n)}?[\t])+|\Z_{(?:\r\n)}+|\Z_{(?:\r\n)}+|\Z_{(?:\r\n)}+|\Z_{(?:\r\n)}+|\Z_{(?:\r\n)}*|+|\Z_{(?:\r\n)}+|\Z_{(?:\r\n)}*|+|\Z_{(?:\r\n)}* $| \ (?=[\["() <> @,;: \".\[\]])) | "(?:[^\"\r\]| \ . | (?:(?:\r\n)?[\ \t])) * "(?:(?:\r\n) | (?:(?:\r\n)?[\ \t])) | "(?:(?:\r\n)?[\ \t]) | "(?:(?:\t)\n)?[\ \t]) | "(?:(?:\t)\n)" | "(?:(?:\t$?[\t])*)*\<(?:(?:\r\n)?[\t])*(?:@(?:[^()<>@,;:\\".\[\]\000-\031]+(?:(?:(?: r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:\(?:(?:\r\n)) $?[\t]) + | \t| (?=[\["() <> 0, ; : \".\[]])) | \t| ([^([]\r\]] | \t|.) * \] (?: (?: \r\n)?[\t]) | \t| (? \t|.) | \t| (? \t$)*))*(?:,@(?:(?:xn)?[\t])*(?:[^()<>@,;:\\".\\]\000-\031]+(?:(?:(?:xn)?[\t])*(?:\hat{1}\\000-\031]+(?:(?:(xn)?[\t])\\([(^\\\)\\\)\\(2:(?:\xn)?[\t])\\([(^\\\)\\\)\\(2:(?:\xn)?[\t])\\(2:(\xn)?[\t])\\(2:\xn)?[\t])\\(2:\xn)?[\t])\\(2:\xn)?[\t]))+|\Z|(?=[\["()<\pi,;:\\".\[\]]))|\[([^\[\]\x\\]|\\.)*\](?:(?:\\\\\))*)*:(?:(?:\\\\\)?[\t])*)?(?:[^()<\pi,:\\".\[\]\000-\031]+(?:(?:\\\\\\\)?[\t])+ $| \Z | \ (?=[\["() <> @,;: \".\[\]])) | \ "(?:[^\"\r\]| \|. | \ (?:(?:\r\n)?[\t])) * "(?:(?:\r\n)?[\t])) | \ "(?:(?:\r\n)?[\t])) | \ "(?:(?:\r\n)?[\t]) | \ "(?:(?:\r\n)?[\t])) | \ "(?:(?:\r\n)?[\t]) | \ "(?:(?:\r\n)?[\t])) | \ "(?:(?:\r\n)?[\t]) | \ "(?:(?:\t)?[\t]) | \ "(?:\t)?[\t]) | \ "(?:(?:\t)?[\t]) | \ "(?:(?:\t)?[\t]$ $: (?: (?: \r\n)?[\t]) + |\Z| (?=[\["() <> @,;: \".\[\]])) |\[([^\[\]\r\])| \.) * \] (?: (?: \r\n)?[\t]) + |\Z| (?=[\["() <> @,;: \r\n)])) |\[([^\[\]\r\n])| + |\Z| (?=[\[\]\r\n])) |\[([^\[\]\r\n])| + |\Z| (?=[\[\]\r\n])| + |\Z| (?=[\[\]\n])| + |\Z| (?=[\[\]\n$ [\t]))*"(?:(?:\r\n)?[\t])*)*:(?:(?:\r\n)?[\t])*(?:(?:(?:[^()<>@,;:\\".\[\] $\label{eq:linear_condition} $$ \label{eq:linear_condition} $$ (?:(?:\r\n)?[\t]) *"(?:(?:\r\n)?[\t]) *(?:[^() <> r^n)?[\t]) *"(?:(?:\r\n)?[\t]) *"(?:(?:\t)?[\t]) *"(?:$ (?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t]*))*@(?:(?:\r\n)?[\t]))*(?:[^()<>@,;:\\".\[\]\000-\031]+(?:(?:\r\n)?[\t])+\\Z|(?=[\["()<>@,;:\\ ".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(? $: [^() <> 0,;: \\ ". \\ [^] \\ 000- \\ 031] + (?: (?: (?: \\ r \\ n)?[\\ t]) + | \\ Z| (?=[\\ ["() <> 0,;: \\ ". \\ [] \\ n) = [] \\ [-]$ \]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*|(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\\\\]|\\.|($?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)*\<(?:(?:\r\n)?[\t])*(?:@(?:[^()<>@,;))*(?:(?:\r\n)?[\t])*(?:@(?:[^()<>@,;))*(?:(?:\r\n)?[\t])*(?:@(?:[^()<>@,;))*(?:(?:\r\n)?[\t])*(?:@(?:[^()<>@,;))*(?:(?:\r\n)?[\t])*(?:@(?:[^()<>@,;))*(?:(?:\r\n)?[\t])*(?:@(?:[^()<>@,;))*(?:(?:\r\n)?[\t])*(?:@(?:[^()<>@,;))*(?:(?:\r\n)?[\t])*(?:@(?:[^()<>@,;))*(?:(?:\r\n)?[\t])*(?:(?:\t)?[\t])*(?:(?$ ^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\ .\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[^\[]))|\[([^\[^\]))|\[([^\[]))|\[([\[]))|\[([\[]))|\[([\[]))|\[([\[]))|\[([\[]))|\[([\[]))|\[([\[]))|\[([\[]))|\[([\[]))|\[([\[]))|\[([\[]))|\[([\[]))|\[([\[]))|\[([\[]))|\[([\[]))|\[([\[]]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*(?:,@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\ [\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\] r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()\<\@,;:\\".\\\]\000-\031]+(?:(?:\r\n)?[\t])+\\Z|(?=[\["()<\@,;:\\".\\[]]))\|[([^\[]\r\\ |\\.)*\](?:(?:\r\n)?[\t])*))*)*:(?:(?:\r\n)?[\t])*)?(?:[^()<>@,;:\\".\[\]\($00-\ 031]+(?:(?:(?:\ r\ n)?[\ t])+|\ Z|(?=[\ (''()<>0,;:\ ''.\ [\]]))|"(?:[^\ r\]|\ ''$.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@ ;:\\".\[\] \000-\031]+(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(? :[^\\r\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t]))*(?:(?:\r\n)?[\t])*(?:(?:\r\n)?[\t])*(?:(?:\r\n)?[\t])+\\z|(?=[\["()<\e,;:\\".\ \[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?: ^()<>@,;:\\".\[\] \000-\031|+(?:(?:(?:\r\n)?[\t])+\\Z|(?=[\["()<>@,;:\\".\[\]]))\\[([^\[\]\\.)*\](?:(?:\r\n)?[\t])*)*\>(?:(?:\r\n)?[\t])*)(?:,\s*(?:(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\" ".\[\]]))|"(?:[^\\x\\]|\\.|(?:(?:\\x\)?[\t]))*"(?:(?:\\x\)?[\t])*)(?:\(?:(?:\\x\))?[\t])*(?:[^()<>0,;:\\".\[\] \000-\031]+(?:(?:(?:\\x\))?[\t])+|\Z|(?=[\["()<>0,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t))*(?:[^()<0,;:\\".\[\]\000~\031]+(?:(?:(?:\r\n))?[\t\]
])*|)*@(?:((?:\r\n))?[\t))*(]([\\\\r\)]\\).)*\](?:(?:\r\n)?[\t])*(]:(?:\r\n)?[\t])*(]:(?:\r\n)?[\t])*(]:()\d)]*(?:(?:\r\n)?[\t])*(]:()\d)]*(?:(?:\r\n)?[\t])*(]:()\d)]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)*\<(?:(?:\r\n) $?[\t]) * (?:@(?:[^() <> @,;: \".\[] \t]) + (?:(?:(?:\r\n)?[\t]) + |\Z|(?=[\t]) + |\Z|(?=[\t]$ $() <> @,;: \\ ". \\ []]) | \\ [([^[] \r \] | \.) * \\] (?: (?: \r \n) ? [\t]) *) (?: \. (?: \r \n) ? [\t]) *) (?: \. (?: \r \n) ? [\t]) *) (?: \. (?: \r \n) ? [\t]) *) (?: \t] * ($?[\t])*(?:[^()<>@,;:\\".\[\]\000-\031]+(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<> @,;:\\".[\]]))\\[([^\[\]r\\]|\\.)*\](?:(?:\r\n)?[\t])*\))*(?:,@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[]\000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@, ;:\\".\[\]]))|\[([^\[\]\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<\e,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+\\Z\|(?=[\["()<\e,;:\\".\[\]]))\\[([^\[\]\\.)*\](?:(?:\r\n)?[\t])*))**:(?:(?:\r\n)?[\t])*)? *))**(?:(?:\r\n)?(\tau)**(?:(?)(>\e,::\\".\[\]\000-\031]*(?:(?:(?:\r\n)?(\tau))*(\tau)**(\tau) $| (?=[\["()<>0,;:\\".\[]])) | | [([^\[]\r)] | \.)*|] (?:(?:\r)n)?[\t])*))* | > (?:(?:\r)n)?[\t])*))* | > (?:(?:\r)n)?[\t])*)$?:\r\n)?[\t])*))*)?;\s*)

REGEX CROSSWORDS



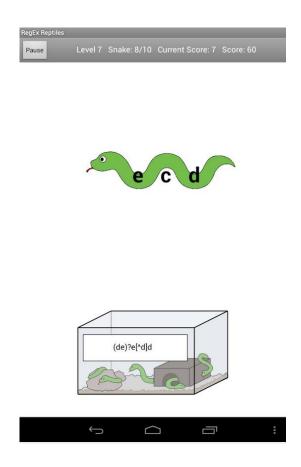
http://regexcrossword.com/

EXERCICES

- Exercice 1 : A quoi correspondent les expressions rationnelles suivantes sur l'alphabet $\Sigma = \{a, b, c\}$.
 - $(a+b+c)^*c$
 - $(aa + bb + cc)^*$
 - $a^{\star}b^{\star}c^{\star}$
- Exercice 2 : Peut-on trouver une expression rationnelle pour décrire les langages suivants sur l'alphabet $\Sigma = \{a, b, c\}$?
 - 1. Mots qui contiennent au moins un a, un b et un c
 - 2. Mots qui commencent et se terminent par la même lettre
 - 3. Mots de longueur 3 qui contiennent un nombre pair de a
 - 4. Mots qui contiennent un nombre pair de a et un nombre impair de b

Pour passer le temps...

Regex Xword



Regex Reptiles

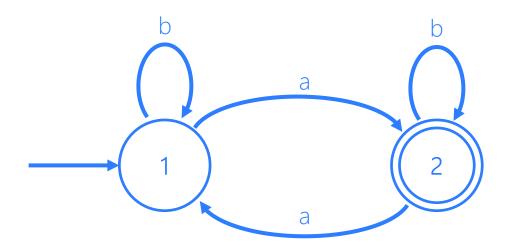
AUTOMATES FINIS DÉTERMINISTES

DÉFINITION FORMELLE

- Un automate fini déterministe est défini par le quintuplet \mathcal{A} = $(\Sigma, Q, q_0, F, \delta)$
 - Σ est l'alphabet (ensemble fini de symboles)
 - Q est un ensemble fini d'états
 - $q_0 \in Q$ est l'état initial
 - $F \subset Q$ est l'ensemble des états finaux
 - δ est une fonction de $Q \times \Sigma$ dans Q, appelée fonction de transition
- Moins formellement,
 - On a plusieurs états possibles
 - On passe d'un état à un autre grâce à un symbole
 - On va chercher un chemin à partir de l'état initial pour arriver dans un état final

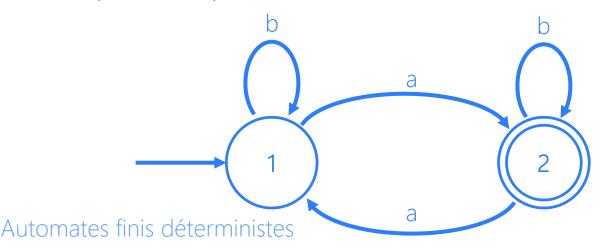
REPRÉSENTATION GRAPHIQUE

- Un automate est généralement représenté de la façon suivante
 - Les états sont représentés par des ronds
 - L'état initial est pointé par une flèche
 - Les états finaux ont un double contour
 - La fonction de transition est indiquée par des flèches
 - Ces flèches sont étiquetées par les symboles de l'alphabet



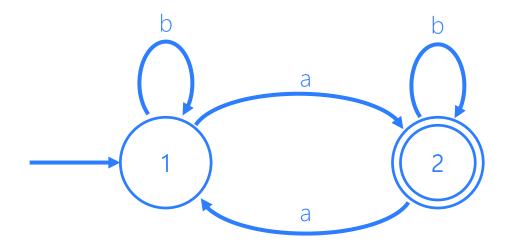
MOT RECONNU PAR UN AUTOMATE

- On dit qu'un automate \mathcal{A} reconnait le mot u si et seulement si :
 - ullet En partant de l'état initial q_0
 - On épèle un-à-un les symboles qui composent $oldsymbol{u}$ (dans l'ordre)
 - Pour chaque symbole, on suit la transition correspondante (on change généralement d'état)
 - On arrive dans l'un des états finaux
- Remarque : On parle de calcul réussi.

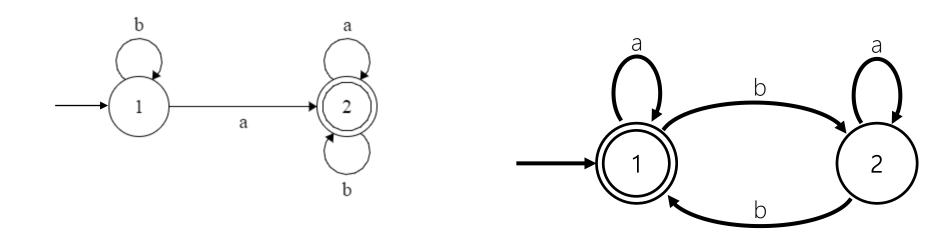


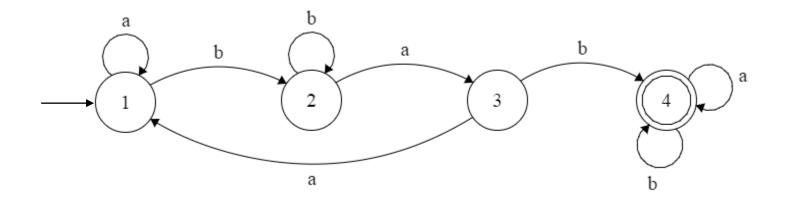
LANGAGES RECONNAISSABLES

- On dit qu'un automate \mathcal{A} reconnait le langage L si et seulement si :
 - L'automate ${\mathcal A}$ reconnait tous les mots qui appartiennent au langage L
 - L'automate ${\mathcal A}$ ne reconnait pas les mots qui n'appartiennent pas au langage L
- Un tel langage est appelé reconnaissable.



QUE RECONNAIT CET AUTOMATE?



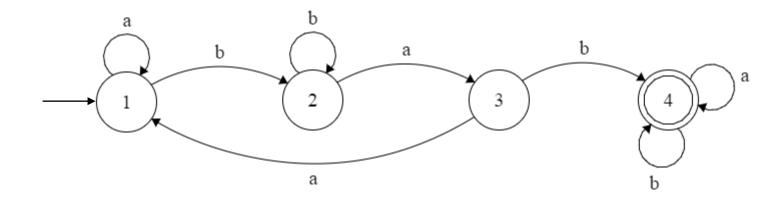


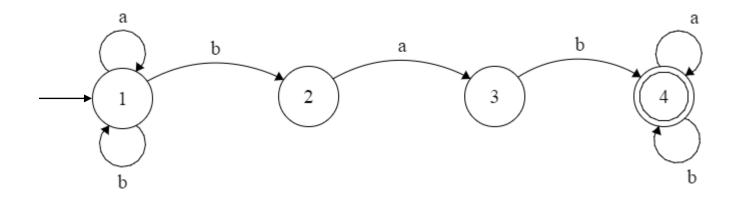
A VOUS DE JOUER!

- Exercice 1: Dessiner les automates finis déterministes sur l'alphabet $\Sigma = \{a, b\}$ reconnaissant les langages suivants :
 - 1. Mots qui ne commencent pas par a
 - 2. Mots qui contiennent un nombre impair de b
 - 3. Mots qui contiennent exactement 3 a
- Exercice 2 : Dessiner les automates finis déterministes sur l'alphabet $\Sigma = \{a, b, c\}$ reconnaissant les langages suivants :
 - 1. Mots qui contiennent le séquence *cba*
 - 2. Mots qui contiennent au moins un $oldsymbol{a}$, un $oldsymbol{b}$, et un $oldsymbol{c}$
- Exercice 3 : Peut-on dessiner un automate sur $\Sigma = \{a,b\}$ qui reconnait les mots contenant autant de a que de b ?

AUTOMATES FINIS NON DÉTERMINISTES

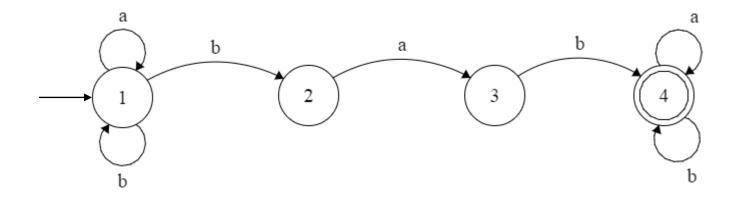
TENTATIVE DE SIMPLIFICATION





DÉFINITION

- Un automate fini non-déterministe est défini par le quintuplet $\mathcal{A}=(\Sigma,Q,I,F,\delta)$
 - Σ est l'alphabet (ensemble fini de symboles)
 - Q est un ensemble fini d'états
 - $I \subset Q$ est l'ensemble des états initiaux
 - $F \subset Q$ est l'ensemble des états finaux
 - $\delta \subset Q \times \Sigma \times Q$ est une relation ; chaque triplet de δ est une transition



•••••• Automates finis non déterministes

DÉTERMINISTES ET NON-DÉTERMINISTES

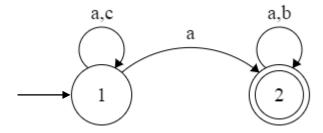
- En anglais, on parle de
 - DFA: deterministic finite automaton
 - NFA: nondeterministic finite automaton
- La différence entre les automates déterministes et les automates non-déterministes est la notion de choix.
- Etat initial
 - DFA : Un seul état initial
 - NFA : Choix parmi plusieurs états initiaux possibles
- Transitions
 - DFA : Pour un état de départ et un symbole donnés, il y a toujours exactement un état de destination
 - NFA : Pour un état de départ et un symbole données, il peut exister plusieurs choix possibles pour l'état de destination

MOT RECONNU PAR UN AUTOMATE

- Un calcul réussi pour un mot u dans un automate fini nondéterministe $\mathcal A$ est un chemin :
 - partant d'un état initial $(q_0 \in I)$
 - étiqueté par les symboles qui composent le mot u
 - arrivant dans un état final $(q_n \in F)$
- On dit qu'un automate fini non-déterministe \mathcal{A} reconnait le mot u si et seulement s'il existe un calcul réussi pour le mot u dans cet automate.
- On dit qu'un automate fini non-déterministe \mathcal{A} reconnait le langage L si et seulement si :
 - L'automate ${\mathcal A}$ reconnait tous les mots qui appartiennent au langage L
 - L'automate ${\mathcal A}$ ne reconnait pas les mots qui n'appartiennent pas au langage L

CHEMINS ÉTIQUETÉS PAR UN MOT

- Pour un automate \mathcal{A} et un mot u donnés,
 - Tous les chemins étiquetés par $oldsymbol{u}$ ne sont pas forcément reconnus
 - ullet Il est également possible qu'il n'existe aucun chemin étiqueté par u



- Conséquences :
 - Il est plus "facile" de dessiner un automate fini non-déterministe
 - Il est plus "difficile" de tester si un mot est reconnu par un automate fini non-déterministe (il faut tester tous les cas possibles)

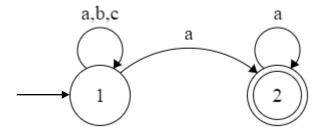
EXERCICE

- Exercice: Dessiner un automate fini non-déterministe sur l'alphabet $\Sigma = \{a, b, c\}$ reconnaissant le langage suivant :
 - 1. Mots qui se terminent par b
 - 2. Mots qui contiennent exactement 3 a
 - 3. Mots qui contiennent le séquence *cba*
 - 4. Mots de longueur 2 ou plus, qui commencent et se terminent par la même lettre

••••• Automates finis non déterministes

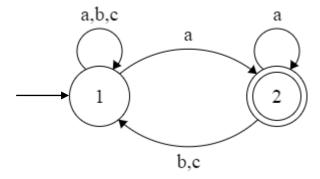
AUTOMATES COMPLETS

- Exercice: Les mots suivants sont-ils reconnus par l'automate ci-dessous?
 - aba
 - a
 - abab
 - aaaaa
 - bb



AUTOMATES COMPLETS

- Un automate \mathcal{A} est dit complet si pour tout état q et pour toute lettre a de l'alphabet, il existe une transition partant de q et étiquettée par a.
- Dans un tel automate, tous les cas sont "prévus".

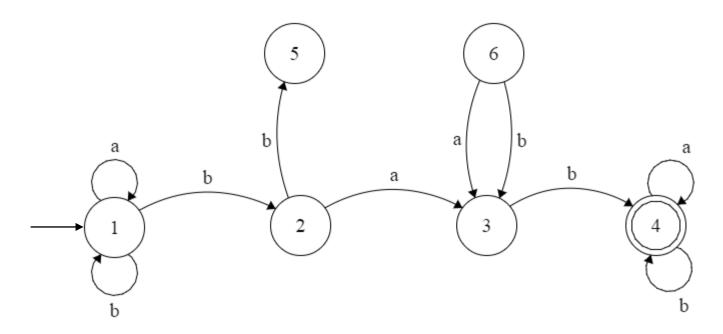


EXERCICE: RAPPELS SUR LES AUTOMATES

- Exercice 1: Dessiner un automate fini non-déterministe sur l'alphabet $\Sigma = \{a, b, c\}$ reconnaissant le langage suivant :
 - 1. Mots qui appartiennent au langage $a^*b^*c^*$
 - 2. Mots qui contiennent les lettres a et b dans cet ordre
 - Mots qui contiennent un nombre pair de a et un nombre pair de b
- Exercice 2 : Dessiner un automate fini déterministe sur l'alphabet $\Sigma = \{a, b, c\}$ reconnaissant le langage suivant :
 - 1. Mots qui se terminent par ac
 - 2. Mots qui contiennent les lettres a et b dans cet ordre
 - 3. Mots qui contiennent plus de a que de b

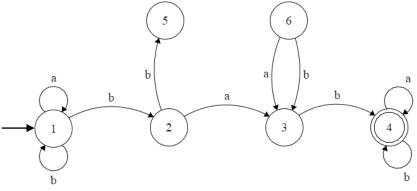
ETATS ACCESSIBLES ET CO-ACCESSIBLES

- Un état q est dit accessible s'il existe un chemin depuis un état initial vers cet état q.
- Un état q est dit co-accessible s'il existe un chemin à partir de cet état q vers un état final.



AUTOMATES ÉMONDÉS

- Un état q est dit utile s'il est à la fois accessible et coaccessible.
- Un automate dont tous les états sont utiles est dit émondé.
- Théorème : Pour tout automate fini \mathcal{A}_1 (déterministe ou non), il existe un automate fini émonde \mathcal{A}_2 reconnaissant exactement le même langage

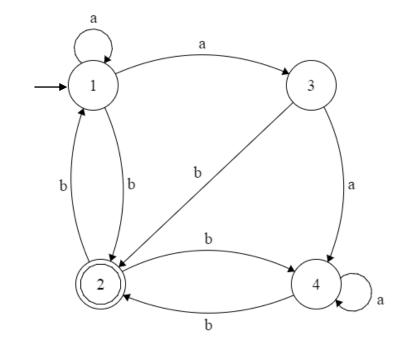


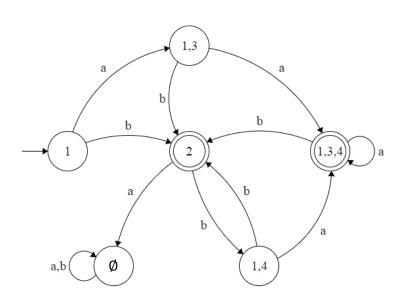
EQUIVALENCE

- Théorème : Pour tout automate fini non-déterministe \mathcal{A}_N , il existe un automate fini déterministe \mathcal{A}_D reconnaissant exactement le même langage.
- On utilise dans la preuve la notion d' "automate des états"
 - On va construire progressivement un automate fini déterministe
 - Cet automate commence par un état q_0 correspondant à l'ensemble I des états initiaux de \mathcal{A}_N
 - On regarde, pour chaque symbole $s \in \Sigma$, l'ensemble E_i des états accessibles dans \mathcal{A}_N depuis au moins l'un des états de q_0 :
 - On créé un état q_i pour représenter cet ensemble E_i (sauf s'il existe déjà)
 - On ajoute une transition de q_0 à q_i étiquetée par s
 - On recommence tant qu'on crée de nouveaux états
 - On marque comme final tout état q_f dans l'ensemble associé E_i contient au moins un état final de \mathcal{A}_N
 - L'automate \mathcal{A}_D ainsi créé est déterministe, et reconnait le même langage que l'automate non-déterministe initial \mathcal{A}_N .

DÉTERMINISATION

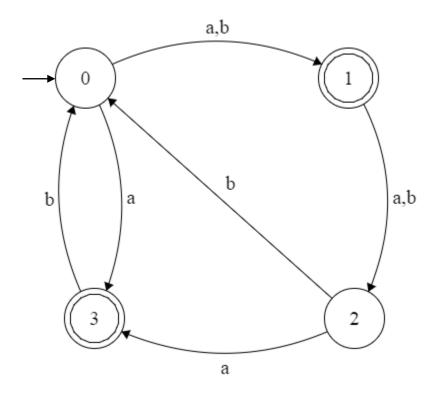
- Création de l' "automate des états"
 - On va construire progressivement un automate fini déterministe
 - Cet automate commence par un état q_0 correspondant à l'ensemble I des états initiaux
 - On regarde, pour chaque symbole $s \in \Sigma$, l'ensemble E_i des états accessibles depuis au moins l'un des états de q_0 :
 - On créé un état q_i pour représenter cet ensemble E_i (sauf s'il existe déjà)
 - On ajoute une transition de q_0 à q_i étiquetée par s
 - On recommence tant qu'on crée de nouveaux états
 - L'automate \mathcal{A}_D ainsi créé est déterministe, et reconnait le même langage que l'automate non-déterministe initial \mathcal{A}_N .





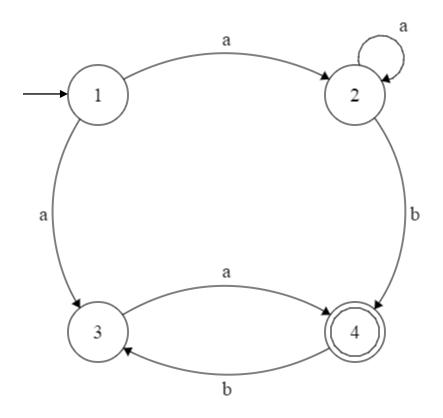
EXERCICE: "DÉTERMINISATION"

• Exercice 1 : Dessiner un automate fini déterministe reconnaissant le même langage que l'automate suivant :



EXERCICE: "DÉTERMINISATION"

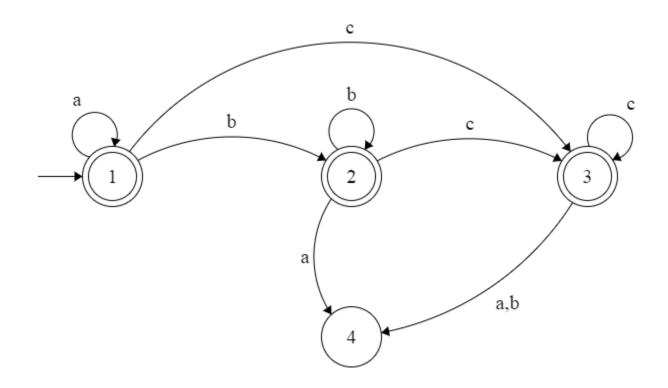
 Exercice 2 : Dessiner un automate fini déterministe reconnaissant le même langage que l'automate suivant :



ε-Transitions

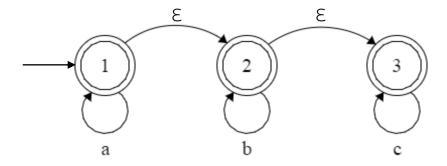
EXERCICE

• Exercice: Dessiner un automate fini déterministe sur l'alphabet $\Sigma = \{a, b, c\}$ qui reconnaît le langage $a^*b^*c^*$



DÉFINITION

- Un automate fini à ε -transitions (ou encore à transitions spontanées) est défini par le quintuplet $\mathcal{A} = (\Sigma, Q, I, F, \delta)$
 - Σ est l'alphabet (ensemble fini de symboles)
 - Q est un ensemble fini d'états
 - $I \subset Q$ est l'ensemble des états initiaux
 - $F \subset Q$ est l'ensemble des états finaux
 - $\delta \subset Q \times (\Sigma \cup \{\varepsilon\}) \times Q$ est une relation ; chaque triplet de δ est une transition



EQUIVALENCE

- Théorème : Pour tout automate fini à ϵ -transitions \mathcal{A}_{ϵ} , il existe un automate fini déterministe \mathcal{A}_{D} reconnaissant exactement le même langage.
- Il existe en effet deux méthodes pour construire un automate fini non-déterministe \mathcal{A}_N reconnaissant exactement le même langage que l'automate fini à ε -transitions $\mathcal{A}_{\varepsilon}$:
 - "ε-fermeture arrière" : on applique les ε-transitions en "amont"
 - "ε-fermeture avant" : on applique les ε-transitions en "aval"
- Une fois qu'on a obtenu un automate fini non-déterministe \mathcal{A}_N équivalent $\mathcal{A}_{\varepsilon}$, il ne reste plus qu'à le déterminiser.

ε -FERMETURE ARRIÈRE

• **Principe**: On cherche à se ramener à un automate fini nondéterministe en appliquant les ε-transitions "en amont" (avant chaque transition)

Mise en œuvre

- S'il existe une transition d'un état q_1 à un état q_2 étiquetée par le symbole s, alors
 - On identifie tous les états qui permettent d'accéder à l'état q_1 par une suite de transitions étiquetées par ϵ
 - Pour chacun de ces états q_i , on ajoute une transition de l'état q_i vers l'état q_2 étiquetée par le symbole s
- Tout état qui permettent d'accéder à un état final par une suite de transitions étiquetées par ε devient lui-même un état final

ε

ε -FERMETURE AVANT

• **Principe**: On cherche à se ramener à un automate fini nondéterministe en appliquant les ε-transitions "en aval" (après chaque transition)

Mise en œuvre

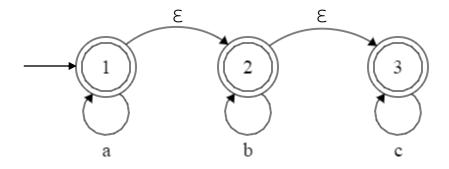
• S'il existe une transition d'un état q_1 à un état q_2 étiquetée par le symbole s, alors

S

- On identifie tous les états accessibles à partir de l'état q_2 par une suite de transitions étiquetées par ϵ
- Pour chacun de ces états q_j , on ajoute une transition de l'état q_1 vers l'état q_j et étiquetée par le symbole s
- Tout état accessible à partir d'un état initial par une suite de transitions étiquetées par ε devient lui-même un état initial

 q_2

EXEMPLE



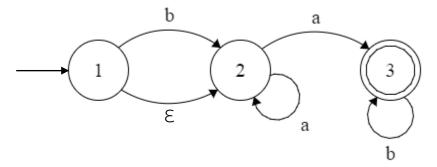
• Méthode 1 : "e-fermeture arrière"

• Méthode 2 : "ε-fermeture avant"

EXERCICES

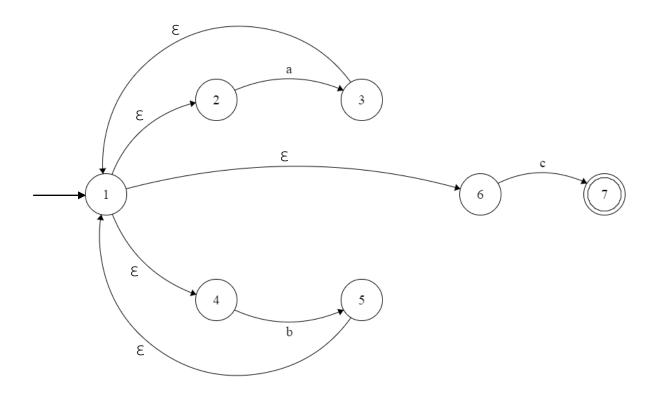
Question 1:

- 1. Dessiner un automate fini à ε -transitions sur l'alphabet $\Sigma = \{a, b, c\}$ reconnaissant le langage décrit par l'expression $a^*b + ba^*$
- 2. Calculer pour chaque état la liste des états accessibles par une suite de transitions étiquetées par ɛ
- 3. Dessiner un automate fini non déterministe équivalent
- 4. Dessiner un automate fini déterministe équivalent
- Question 2 : Dessiner un automate fini déterministe équivalent à l'automate ci-dessous



EXERCICES

• Question 3 : On considère l'automate ci-dessous

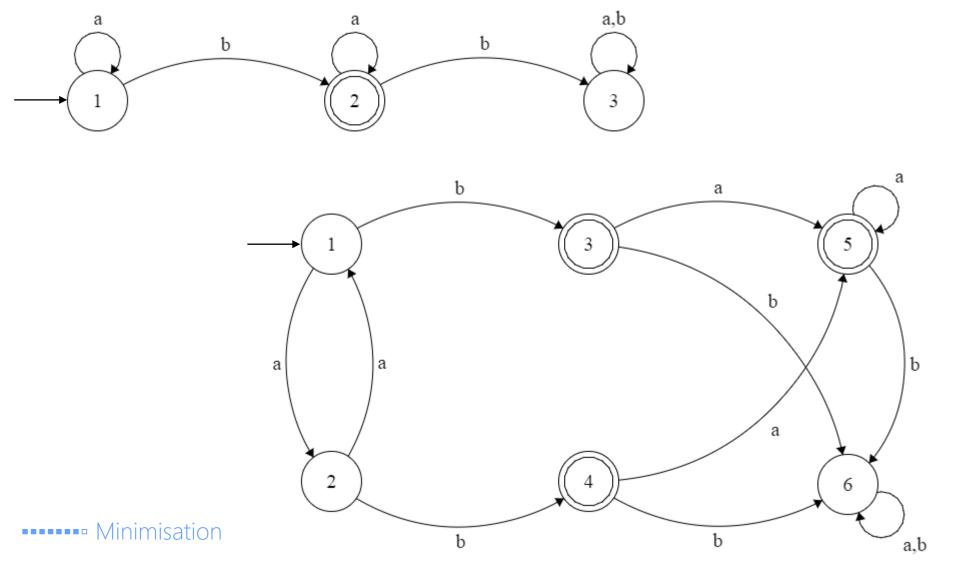


- 1. Construire un automate fini équivalent sans ε-transitions
- 2. Peut-on construire un automate fini équivalent avec moins d'états?

MINIMISATION

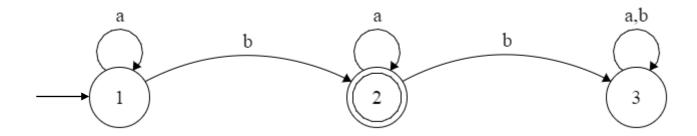
COMPARER DES AUTOMATES

Quels sont les langages reconnus par ces deux automates?



AUTOMATE MINIMAL

- Théorème: Pour tout langage L reconnaissable par un automate fini déterministe, il existe un plus petit automate déterministe complet reconnaissant L. Cet automate est unique à la numérotation des états près.
- Remarque: On parle d'automate minimal ou d'automate canonique.



ALGORITHME DE MOORE

Question: Comment construire cet automate minimal?

Algorithme de Moore

- On va essayer de regrouper les états par "classe d'équivalence"
- Approche itérative

Principe

- On va diviser l'ensemble Q des états en plusieurs sous-ensembles : $Q=Q_1\cup Q_2\cup \cdots \cup Q_k$ avec $Q_i\cap Q_j=\emptyset$ si $i\neq j$
- L'objectif est de trouver des sous-ensembles qui constituent des « classes d'équivalence » :

Si un état q appartient à la classe Q_i , et que la transition issue de l'état q étiquettée le symbole s aboutit dans l'état r appartenant à la classe Q_j ,

 $q \in Q_i$

Alors pour tout état q' appartient aussi à la classe Q_i , la transition issue de l'état q' étiquettée le symbole s doit aboutir dans un état r' appartenant à la même classe Q_i

 $r \in Q_j$

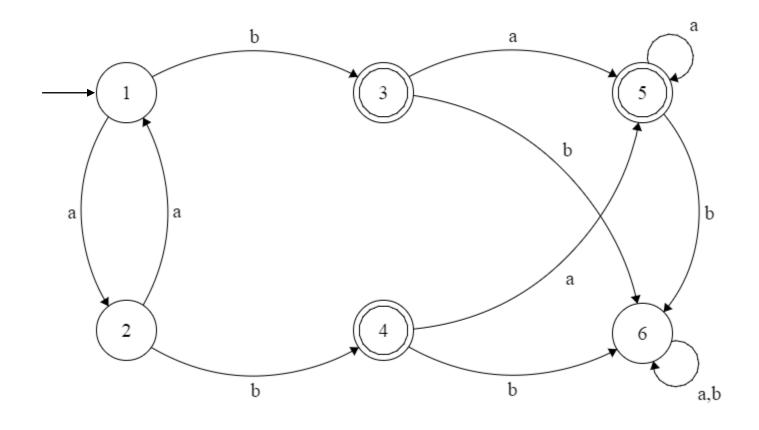
 $r' \in Q_i$

 $q' \in Q_i$

ALGORITHME DE MOORE

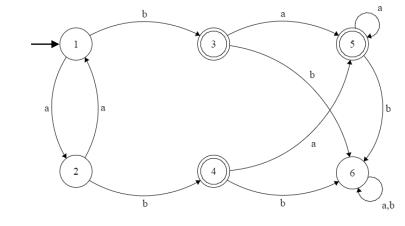
- On commence avec deux sous-ensemble d'états
 - L'ensemble des états finaux F
 - Les autres états de l'automate $Q \setminus F$
- Pour chaque sous-ensemble d'états, on regarde pour chaque symbole s si les transitions étiquetées par s arrivent dans le même sous-ensemble
 - Si c'est le cas, ce sous-ensemble est « stable »
 - Si ce n'est pas le cas, ce sous-ensemble n'est pas « stable » : il faut le scinder
- Tant qu'on trouve au moins un sous-ensemble à scinder, on recommence
- Lors que tous les sous-ensembles sont stables, on en déduit un nouvel automate :
 - On créé un état par classe d'équivalence identifiée
 - Les transitions sont basées sur les transitions entre états
 - L'état correspondant à l'ensemble F est un état final
 - L'état contenant l'état initial q_0 est l'état initial

EXEMPLE DE MINIMISATION

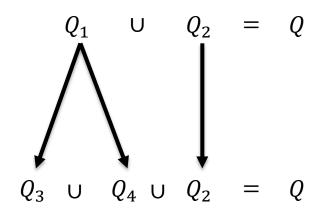


••••• Minimisation

EXEMPLE DE MINIMISATION



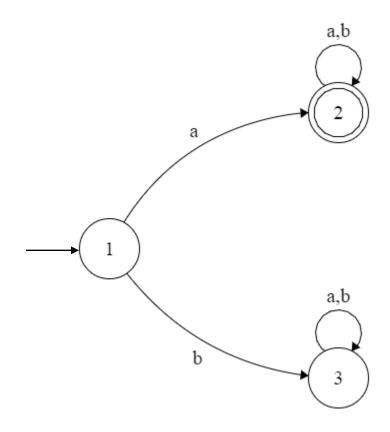
	1	2	3	4	5	6
Classes #1	Q_1	Q_1	Q_2	Q_2	Q_2	Q_1
а	Q_1	Q_1	Q_2	Q_2	Q_2	Q_1
b	Q_2	Q_2	Q_1	Q_1	Q_1	Q_1
Classes #2	Q_3	Q_3	Q_2	Q_2	Q_2	Q_4
а	Q_3	Q_3	Q_2	Q_2	Q_2	Q_4
b	Q_2	Q_2	Q_4	Q_4	Q_4	Q_4



¹ Minimisation

A VOTRE TOUR

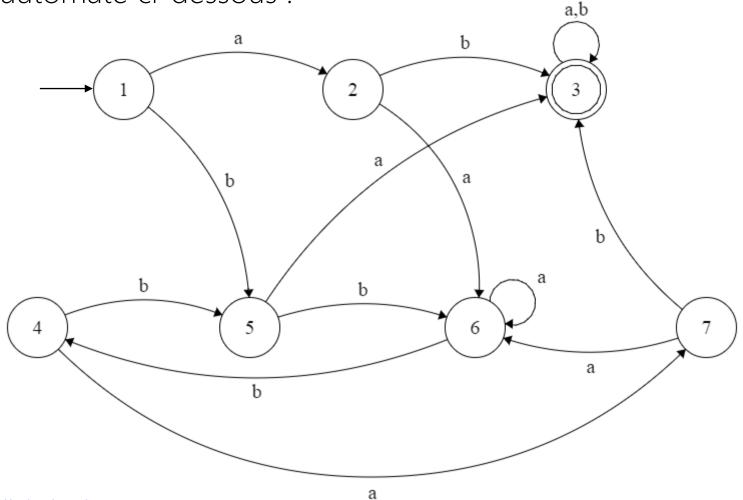
• Exercice 1 : Dessiner l'automate minimal équivalent à l'automate ci-dessous :



••• Minimisation

A VOTRE TOUR

• Exercice 2 : Dessiner l'automate minimal équivalent à l'automate ci-dessous :



Minimisation

AUTOMATES FINIS ET EXPRESSIONS RATIONNELLES

PETIT SONDAGE

Question: Que pensez-vous des propositions suivantes?

- Pour tout langage L décrit par une expression rationnelle, il existe un automate fini déterministe reconnaissant ce langage.
- Pour tout langage *L* reconnu par un automate fini déterministe, il existe une expression rationnelle décrivant ce langage.

EQUIVALENCE?

- Théorème de Kleene : Un langage est reconnaissable (c'està-dire reconnu par un automate fini) si et seulement si il est rationnel (c'est-à-dire décrit par une expression rationnelle)
- Stephen Cole Kleene (1909-1994) était un mathématicien et logicien américain

RAPPEL: EXPRESSIONS RATIONNELLES

- Les expressions rationnelles sur un alphabet Σ sont définies de la façon suivante :
 - L'ensemble vide Ø est une expression rationnelle
 - Le mot vide ε est une expression rationnelle
 - Pour tout symbole $a \in \Sigma$, a est une expression rationnelle
 - Si e_1 et e_2 sont des expressions rationnelles,
 - L'union $e_1 + e_2$ est une expression rationnelle
 - La concaténation e_1e_2 est une expression rationnelle
 - L'étoile e_1^* est une expression rationnelle

Remarques :

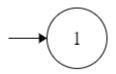
- C'est une définition récursive
- A chaque expression régulière peut être associé un langage

DE L'EXPRESSION À L'AUTOMATE : OBJECTIFS

- Pour créer l'automate correspondant à une expression rationnelle, il "suffit" donc de suivre cette définition récursive.
- Il faut donc être capable de créer
 - Un automate \mathcal{A}_{\emptyset} qui reconnait l'ensemble vide \emptyset
 - Un automate $\mathcal{A}_{\{ar{arepsilon}\}}$ qui reconnait le langage constitué du mot vide $ar{arepsilon}$
 - Pour tout symbole $a \in \Sigma$, un automate $\mathcal{A}_{\{a\}}$ qui reconnait le langage constitué du mot a
 - Si \mathcal{A}_1 et \mathcal{A}_2 sont des automates finis, reconnaissant respectivement les langages L_1 et L_2 ,
 - Un automate \mathcal{A}_{1+2} qui reconnaît la langage $L_1 \cup L_2$
 - Un automate $\mathcal{A}_{1\cdot2}$ qui reconnaît la langage L_1L_2
 - Un automate $\mathcal{A}_{1^{\star}}$ qui reconnaît la langage ${L_1}^{\star}$

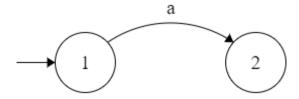
DE L'EXPRESSION À L'AUTOMATE : CAS DE BASE

• **Objectif** : Un automate \mathcal{A}_{\emptyset} qui reconnait l'ensemble vide \emptyset



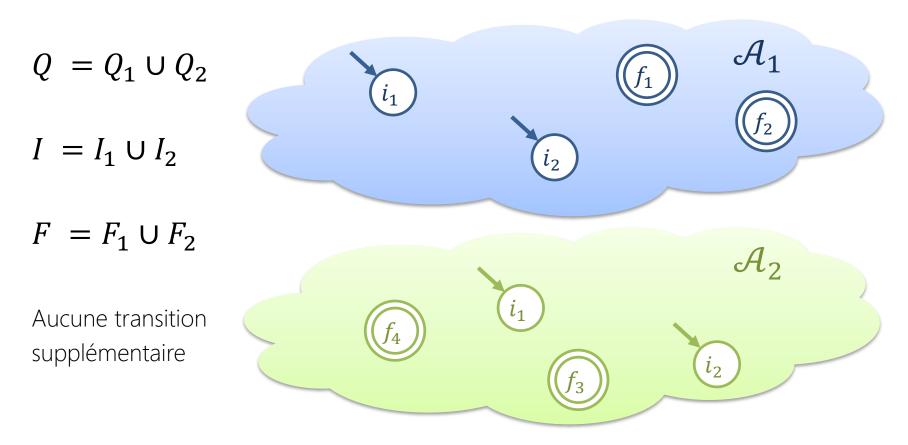
• **Objectif** : Un automate $\mathcal{A}_{\{\mathcal{E}\}}$ qui reconnait le langage constitué du mot vide $\pmb{\varepsilon}$

• Objectif : Pour tout symbole $a \in \Sigma$, un automate $\mathcal{A}_{\{a\}}$ qui reconnait le langage constitué du mot a



DE L'EXPRESSION À L'AUTOMATE : UNION

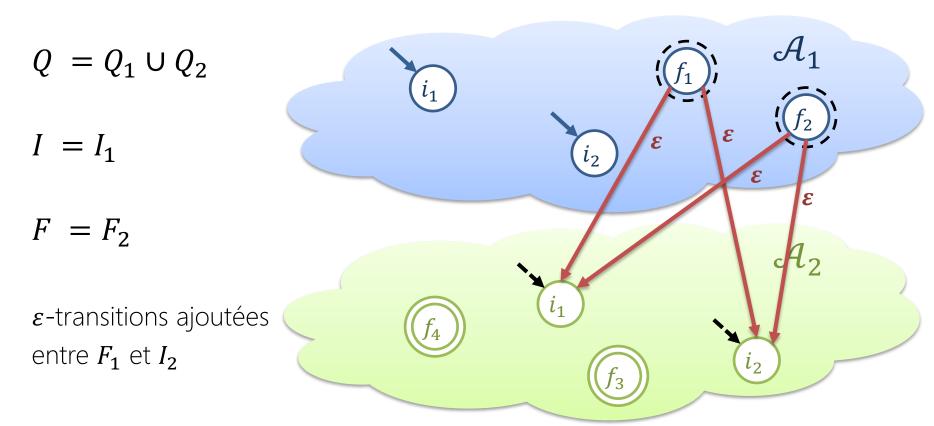
• Objectif: Si \mathcal{A}_1 et \mathcal{A}_2 sont des automates finis, reconnaissant respectivement les langages L_1 et L_2 , un automate \mathcal{A}_{1+2} qui reconnaît la langage $L_1 \cup L_2$



••••• Automates finis et expressions rationnelles

DE L'EXPRESSION À L'AUTOMATE : CONCATÉNATION

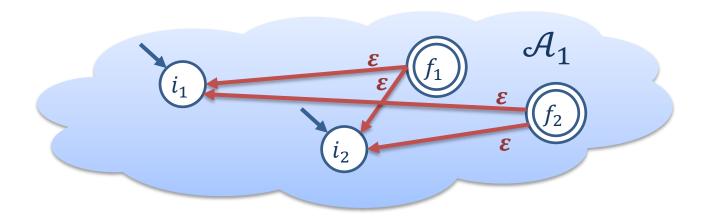
• Objectif: Si \mathcal{A}_1 et \mathcal{A}_2 sont des automates finis, reconnaissant respectivement les langages L_1 et L_2 , un automate $\mathcal{A}_{1\cdot 2}$ qui reconnaît la langage L_1L_2



•••••• Automates finis et expressions rationnelles

DE L'EXPRESSION À L'AUTOMATE : ETOILE

• **Objectif** : Si \mathcal{A}_1 est un automate fini reconnaissant le langage L_1 , un automate \mathcal{A}_{1^*} qui reconnaît la langage L_1^*



arepsilon-transitions ajoutées entre F et I

A VOUS DE JOUER

• Exercice 1 : Pour chacun des langages ci-dessous, dessiner un automate fini qui reconnaît exactement ce langage :

- 1. $L_1 = a(a+b+c)^*$
- $L_2 = (a + bb + c)^*$
- 3. $L_3 = (a+b+c)(a+b+c)$
- 4. $L_4 = L_1 L_3$
- 5. $L_5 = L_1 L_2 L_3$
- Exercice 2:
 - 1. $L_1 = a(a+b+c)^*$

LANGAGES NON RATIONNELS

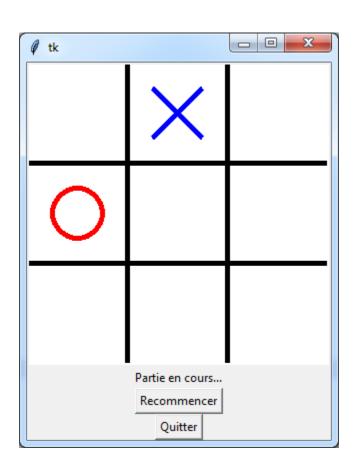
- Question: Existe-t-il des langages non rationnels?
- Exemple: Le langage $L = \{a^n b^n \mid n \ge 0\}$ est-il rationnel?

Preuve :

- Par l'absurde, supposons que ce langage est rationnel
- D'après le théorème de Kleene, ce langage est donc reconnaissable : il existe donc un automate fini déterministe A qui reconnait ce langage.
- On note k le nombre d'états \mathcal{A}
- On choisit un entier p > k
- Que dire du mot $a^p b^p$?

PROCHAINE SÉANCE

Jeudi 11 février *Interfaces graphiques et interactions (suite)*



EXERCICE: RAPPELS SUR LES AUTOMATES

- Exercice 1 : Dessiner un automate fini (déterministe ou non) sur l'alphabet $\Sigma = \{a, b, c\}$ reconnaissant le langage suivant :
 - 1. Mots qui contient un nombre de a multiple de 3
 - 2. Mots qui contient un nombre de a multiple de 3, et un nombre de b non multiple de 3
 - Mots qui contiennent les séquences ab et ac
 - 4. Mots qui contiennent les séquences *ab* et *bc*
 - 5. $L = \{a^n b^n \mid n \ge 0\}$
- Exercice 2 : Dessiner un automate fini déterministe sur l'alphabet reconnaissant le même langage que l'automate ci-dessous :

