BOOLÉENS ET PORTES LOGIQUES

Vendredi 20 Mai

Option Informatique

Ecole Alsacienne

AVANT DE COMMENCER

- TD pris en compte pour le 3^e trimestre
 - Détection et correction
 - Méthodes de chiffrement
 - Tris et complexité
- Date limite pour l'envoi des TD (en retard) : 22 mai à 23h59
- Prochaines séances
 - 27 mai : devoir sur table
 - 3 juin : correction du devoir et bilan de l'année

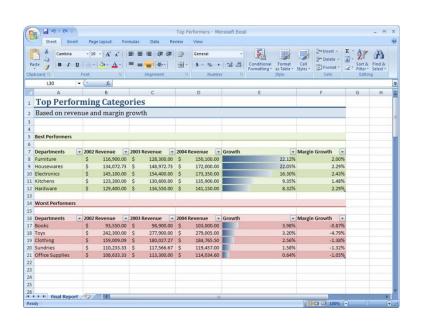
PLAN

- 1. Introduction
- 2. Booléens
- 3. Formules booléennes classiques
- 4. Propriétés
- 5. Circuits booléens
- 6. Exercices

INTRODUCTION

INTRODUCTION

Un ordinateur, ça fait des tas de trucs...



La question : comment ?

INTRODUCTION

Plus simplement, comment un ordinateur sait-il que :

- 40 + 2 = 42?
- 1 + 1 = 2?
- $0 \neq 1$?

LA RÉPONSE EN DEUX MOTS

QUELQUES PETITES QUESTIONS

Qu'est-ce que c'est ?

Un transistor!

- Un exemple concret de porte logique
- Mais au fait, c'est quoi une porte logique ?

BOOLÉENS

0 ou 1

Faux Vrai
Non Oui
Ouvert Fermé
Arrêt Marche
Nul Positif

Tension 1 Tension 2

DÉFINITION

- Un booléen est une donnée qui ne peut avoir que deux états possibles.
- Ces deux états, aussi appelés valeurs de vérité, sont généralement noté Vrai et Faux, ou encore 1 et 0
- Un booléen peut être
 - Une constante booléenne (dont la valeur de vérité est toujours la même)
 - Une variable booléenne (dont la valeur de vérité peut changer)

EXEMPLES DE BOOLÉENS

Constantes

- Vrai
- False
- 4 est plus grand que 6

Variables

- Le nombre P est plus grand que le nombre Q
- Il pleut aujourd'hui

FONCTION LOGIQUE

 On appelle fonction logique une fonction prenant en argument un (ou plusieurs) booléen(s) et renvoyant un (ou plusieurs) booléen(s).

$$f: \mathbb{B}^n \to \mathbb{B}^m$$

 On parle aussi de porte logique, mais plutôt pour désigner la représentation graphique associée ou le composant électronique correspondant.

TABLE DE VÉRITÉ

- Une table de vérité est une liste exhaustive des valeurs d'une fonction logique pour toutes les valeurs possibles de ses arguments
- Une telle table est souvent représentée de la façon suivante :

x	у	f(x,y)
0	0	f(0,0)
0	1	f(0,1)
1	0	f(1,0)
1	1	<i>f</i> (1,1)

EXEMPLE: LA PORTE ET

La fonction ET réalise la conjonction entre deux booléens :

$$f: \mathbb{B}^2 \to \mathbb{B}$$

$$f(x,y) = Vrai$$
 si et seulement si $\begin{cases} x = Vrai \\ y = Vrai \end{cases}$

\boldsymbol{x}	y	f(x,y)
0	0	0
0	1	0
1	0	0
1	1	1

FONCTIONS BOOLÉENNES CLASSIQUES

CONSTANTE **VRAI**

- **Description**: Constante toujours vraie
- Notation: Vrai ou True ou T ("top")
- Valeur de vérité : 1
- Représentation graphique :

1

Nom anglais : True

CONSTANTE FAUX

- **Description**: Constante toujours fausse
- Notation: Faux ou False ou ⊥ ("bottom")
- Valeur de vérité : 0
- Représentation graphique :

0

Nom anglais: False

PORTE NON

Description : Contraire d'un booléen x

• Notation : $\neg x$ ou \bar{x} ("x barre")

• Table de vérité :

\boldsymbol{x}	\overline{x}
0	1
1	0

• Représentation graphique : $x \rightarrow \overline{x}$

Nom anglais: NOT

PORTE ET

• **Description** : Conjonction de deux booléens x et y

• Notation : $x \wedge y$

• Table de vérité :

\boldsymbol{x}	у	$x \wedge y$
0	0	0
0	1	0
1	0	0
1	1	1

• Représentation graphique : $x \rightarrow y \rightarrow x \wedge y$

Nom anglais : AND

PORTE **OU**

Description : Disjonction de deux booléens x et y

• Notation : $x \vee y$

Table de vérité :

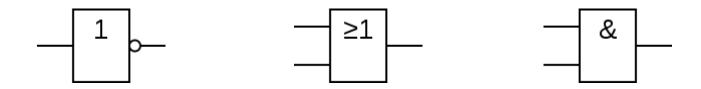
\boldsymbol{x}	у	$x \vee y$
0	0	0
0	1	1
1	0	1
1	1	1

• Représentation graphique : $x \to y \to x \lor y$

Nom anglais : OR

REMARQUE GÉOGRAPHIQUE

- Les symboles présentés dans les slides précédents sont appelés symboles américains
- C'est une norme de représentation (nommée ANSI/IEEE 91-1984) adaptée aux schémas simples et aux tracés à la main.
- Il existe d'autres normes, notamment des symboles dits européens (norme CEI 60617-12), moins utilisés, mais permettant de représenter davantage de circuits :



PROPRIÉTÉS

COMMUTATIVITÉ

• Les fonctions ET et OU sont commutatives :

$$x \lor y = y \lor x$$

$$x \wedge y = y \wedge x$$

DISTRIBUTIVITÉ

$$x \lor (y \land z) = (x \lor y) \land (x \lor z)$$

$$x \land (y \lor z) = (x \land y) \lor (x \land z)$$

x	у	Z	$(y \wedge z)$	$x \lor (y \land z)$	$(x \lor y)$	$(x \lor z)$	$(x \lor y) \land (x \lor z)$
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

AVEC LES CONSTANTES

- Vrai ∧ Vrai = Vrai
- Vrai ∧ Faux = Faux
- Faux ∧ Vrai = Faux
- Faux ∧ Faux = Faux
- Vrai V Vrai = Vrai
- Vrai V Faux = Vrai
- Faux V Vrai = Vrai
- Faux V Faux = Faux

AVEC LES CONSTANTES

Pour toute variable booléenne x,

- Vrai $\Lambda x = x$
- Faux $\Lambda x = Faux$
- Vrai V x = Vrai
- Faux $\forall x = x$

Règles de priorité

• Question : Que vaut cette formule logique ?

Vrai V Faux V Vrai Λ Faux

• Réponse: Vrai

• Explication : Le ET est prioritaire sur le OU.

C'est comme si on avait les parenthèses suivantes :

Vrai V Faux V (Vrai ∧ Faux)

Pour modifier ces priorités, on utilise des parenthèses :
 (Vrai V Faux V Vrai) Λ Faux

THÉORÈME DE DE MORGAN

• Théorème de De Morgan :

$$\overline{x \vee y} = \bar{x} \wedge \bar{y}$$

$$\overline{x \wedge y} = \overline{x} \vee \overline{y}$$

x	у	$x \lor y$	$\overline{x \vee y}$	\bar{x}	\bar{y}	$\bar{x} \wedge \bar{y}$
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

CIRCUITS BOOLÉENS

DÉFINITIONS

- Un circuit booléen est une combinaison de plusieurs portes logiques connectées entre elles.
- Ces circuits reçoivent en entrée un certain nombre de booléens, appelés variables d'entrée, et renvoient un autre jeu de booléens appelés variables de sorties.

LOGIQUE COMBINATOIRE

- On travaille dans le cadre de la **logique combinatoire** : les valeurs de vérité des variables de sortie dépendent uniquement des valeurs de vérité des variables d'entrée.
- Il existe d'autres modèles, dont notamment la logique séquentielle, où la sortie dépend aussi des états précédents des entrées

PORTE NON-ET

• **Description**: Contraire d'une porte ET

• Notation : $\overline{x \wedge y}$

\boldsymbol{x}	y	$\overline{x \wedge y}$
0	0	1
0	1	1
1	0	1
1	1	0

• Table de vérité :

Représentation graphique :

$$y = \sum_{x \land y} \overline{x \land y}$$

Nom anglais: NAND

PORTE NON-ET

Circuit booléen correspondant :

x	у	$\overline{x \wedge y}$
0	0	1
0	1	1
1	0	1
1	1	0

•••• Circuits booléens

PORTE NON-OU

Description : Contraire d'une porte ou

• Notation : $\overline{x \vee y}$

• Table de vérité :

• Représentation graphique :

$$y \longrightarrow \overline{x \vee y}$$

Nom anglais : NOR

PORTE NON-OU

Circuit booléen correspondant :

\boldsymbol{x}	у	$\overline{x \vee y}$
0	0	1
0	1	0
1	0	0
1	1	0

PORTE OU-EXCLUSIF

Description: "Soit I'un, soit I'autre, mais pas les deux"

• Notation : $x \oplus y$

\boldsymbol{x}	y	$x \oplus y$
0	0	0
0	1	1
1	0	1
1	1	0

• Table de vérité :

• Représentation graphique :

$$x \oplus y$$

Nom anglais : XOR

PORTE OU-EXCLUSIF

Circuit booléen correspondant :

x	y	$x \oplus y$
0	0	0
0	1	1
1	0	1
1	1	0

PORTE NON-OU-EXCLUSIF

Description: "Soit aucun, soit les deux"

• Notation : $\overline{x \oplus y}$

\boldsymbol{x}	у	$\overline{x \oplus y}$
0	0	1
0	1	0
1	0	0
1	1	1

• Table de vérité :

• Représentation graphique :

$$x \to y \to x \oplus y$$

Nom anglais : XNOR

PORTE NON-OU-EXCLUSIF

Circuit booléen correspondant :

x	у	$\overline{x \oplus y}$
0	0	1
0	1	0
1	0	0
1	1	1

EXERCICES

PREMIERS EXERCICE

• Question : Peut-on réaliser un circuit équivalent à une porte AND sans utiliser une porte AND ?

• Question : Peut-on réaliser un circuit équivalent à une porte XOR en n'utilisant que des portes NAND ?

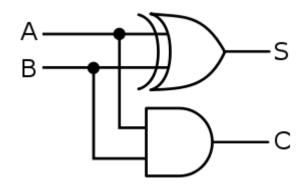
ADDITIONNEUR

Questions :

- Comment additionner deux nombres ?
- Comment représenter un nombre ?
- Comment additionner deux bits ?
- Sous quelle forme renvoyer la réponse ?

Demi-additionneur :

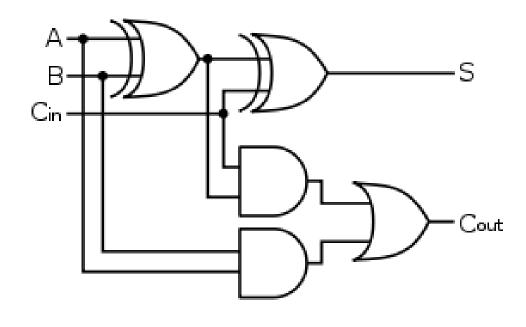
Α	В	S	С
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1



ADDITIONNEUR

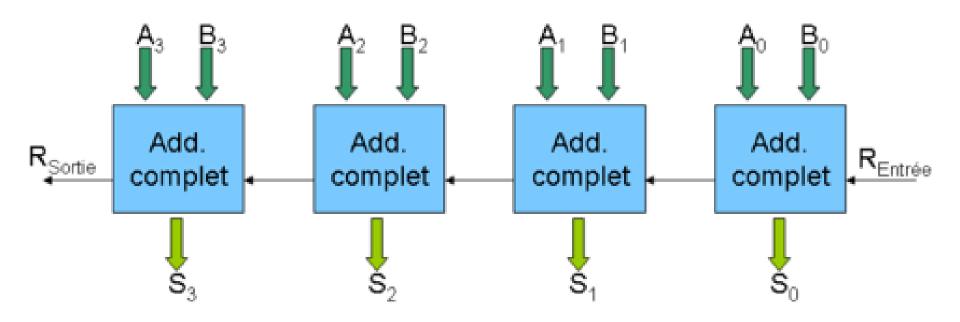
• Additionneur complet :

Α	В	Cin	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1



ADDITIONNEUR

• Additionneur parallèle à propagation de retenue



MULTIPLEXEUR

Entrées et sorties :

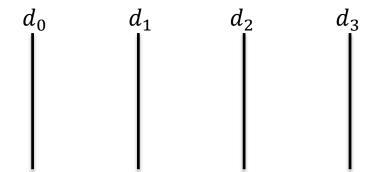
- 4 entrées de données (valeurs stockées sur la machine)
- 2 entrées de sélection
- Une sortie

Principe :

Les valeurs de vérité des entrées de sélection définissent quelle est l'entrée de données dont la valeur de vérité est envoyée sur la sortie

MULTIPLEXEUR

Circuit booléens correspondant

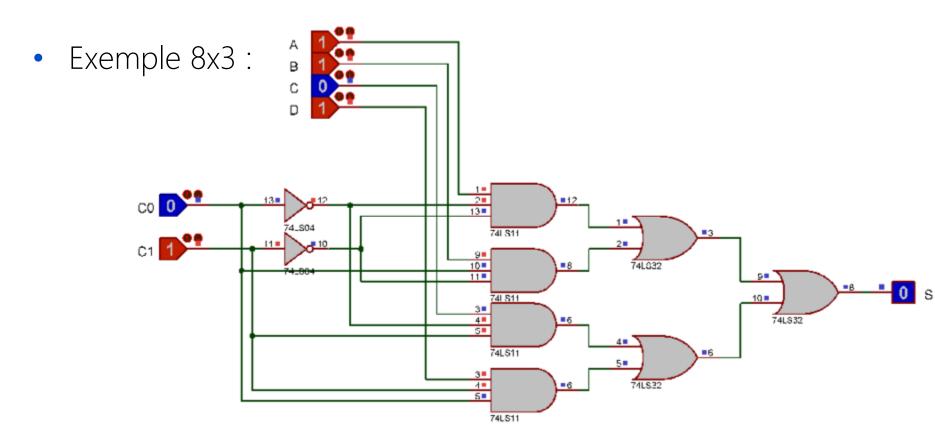


$$i_0$$

$$i_1$$
 ———

MULTIPLEXEUR

- Formule générale :
 - 2ⁿ entrées de données
 - n entrées de sélection



DÉMULTIPLEXEUR

Entrées et sorties :

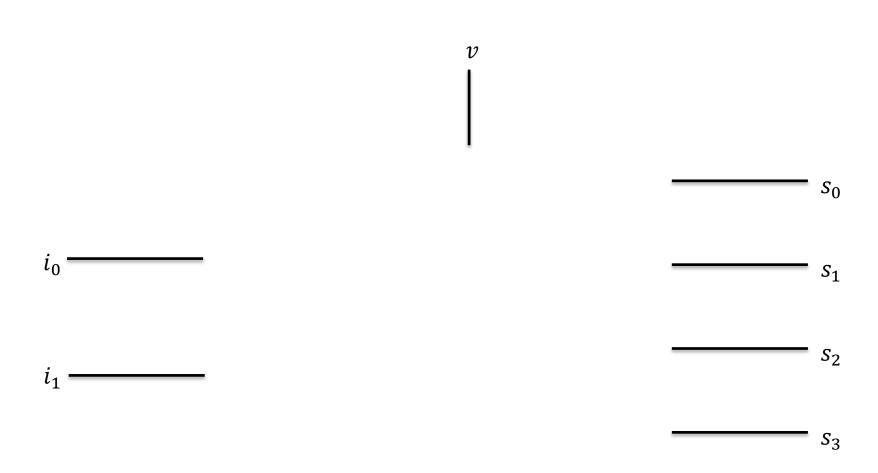
- 2 entrées de sélection
- Une entrée valeur
- 4 sorties

Principe :

Les valeurs de vérité des entrées de sélection définissent quelle est la sortie sur laquelle sera envoyé l'entrée valeur.

DÉMULTIPLEXEUR

Circuit booléens correspondant



DÉMULTIPLEXEUR

Formule générale :

- n entrées de sélection
- Une entrée valeur
- 2ⁿ sorties

Cas particulier :

 Si l'entrée de valeur a toujours la valeur 1, le circuit est appelé un décodeur.

PROCHAINE SÉANCE

Vendredi 27 mai Devoir sur table

