INTRODUCTION À LA COMPLEXITÉ

Vendredi 1 avril

Option Informatique Ecole Alsacienne

AVANT DE COMMENCER

- Prochaines séances
 - 8 avril : Tris et complexité 1/2
 - 15 avril : Bac blanc
 - 6 mai : Pont de l'Ascension ?
 - 13 mai : Tris et complexité 2/2
 - 20 mai : Booléens et portes logiques
 - 27 mai : Devoir sur table
 - 3 juin : dernière séance
- TD à rendre pour le 24 avril
 - Détection et correction
 - Méthodes de chiffrement

PLAN

- 1. Ordres de grandeur
- 2. Définitions et notations
- 3. Premiers exemples
- 4. Complexité et récursivité
- 5. Exercices

ORDRES DE GRANDEUR

Ordres de Grandeur

- A combien estimez-vous les quantités suivantes ?
 - Nombre de gênes de l'être humain : 30 000
 - Nombre de cheveux sur la tête : 125 000
 - Nombre de livres et d'imprimés à la BNF : 54 millions
 - Nombre d'être humains : 7,4 milliards
 - Nombre de neurones dans un cerveau humain : 10^{11}
 - Nombre de cellules dans le corps humain : 10^{14}
 - Nombre d'insectes sur Terre : 10¹⁸
 - Nombre d'atomes dans le corps humain : 7×10^{27}
 - Nombre d'atomes constituant la Terre : 10⁵⁰
 - Nombre de particules dans l'Univers : 10⁸⁰
 - Nombre de parties possibles aux échecs : 10¹²³

Ordres de Grandeur

- Quel est l'âge de l'univers ?
 - Environ 15 milliards d'années
 - Soit environ 5×10^{17} secondes
- Combien d'opérations élémentaires un ordinateur peut-il faire par seconde ?
 - Les processeurs actuels font tous au moins 1 Ghz
 - Rappel : 1 Hz = "1 fois par seconde"
 - Donc quelques milliards d'opérations par seconde
- Combien de temps faut-il à un ordinateur pour compter de 1 en 1 jusqu'à 10^{27} ?
 - Deux fois l'âge de l'univers (10¹⁸ secondes)
 - Explication :
 - En une seconde, il compte de $1 \text{ à } 10^9$
 - En dix secondes, il compte de 1 à $10 \times 10^9 = 10^{10}$
 - En mille secondes, il compte de 1 à $1000 \times 10^9 = 10^{12}$
 - En 10^{18} secondes, il compte de 1 à $10^{18} \times 10^9 = 10^{27}$

COMPARAISONS ENTRE FONCTIONS

- Lequel de ces nombres est le plus grand ? (quand n prend des valeurs très élevées)
 - $1000 \times n$ ou n^2
 - $n \circ u \cdot 2 \times n$
 - n ou n^2
 - n^{10} ou 2^n

L'ÉNIGME DU NÉNUPHAR

- Le premier janvier, un étang contient un unique nénuphar.
- Chaque nuit, chaque nénuphar donne naissance à un nouveau nénuphar.
- Chaque nénuphar recouvre une petite surface du lac (toujours la même)

• Question : Sachant que la moitié du lac est recouverte le 31 janvier, quand le lac entier sera-t-il entièrement recouvert ?

LA FONCTION EXPONENTIELLE

- Notation : l'exponentielle de n se note e^n ou $\exp(n)$
- Informellement :
 - "plus n est grand, plus e^n monte vite"
 - "plus n est grand, plus e^n est plus grand que e^{n-1}
- Propriétés mathématiques :
 - $= \exp(n+m) = \exp(n) \times \exp(m)$
 - $\exp(0) = 1$
 - La dérivée de l'exponentielle est l'exponentielle : $\exp'(x) = \exp(x)$

LA FONCTION 2^n

- Lien avec les nénuphars : 2^n se comporte comme e^n
- Informellement :
 - "plus n est grand, plus 2^n monte vite"
 - "plus n est grand, plus 2^n est plus grand que 2^{n-1}
- Propriétés mathématiques :
 - $2^{n+m} = 2^n \times 2^m$
 - $2^0 = 1$

• S'il s'est écoulé n jours depuis le premier janvier, l'étang contient $\mathbf{2}^n$ nénuphars

LA FONCTION LOGARITHME

• On peut voir la fonction **logarithme** comme l'inverse de la fonction exponentielle :

$$\log(\exp(x)) = x = \exp(\log(x))$$

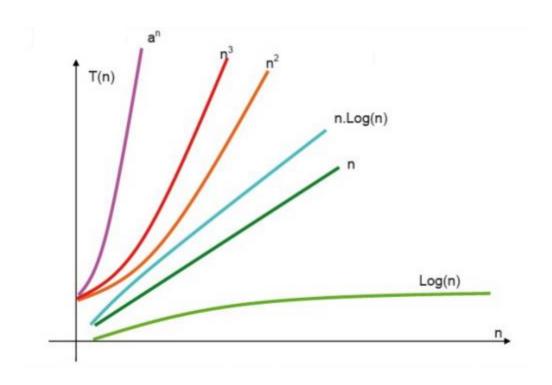
- On parle souvent du **logarithme en base 2**, qui est tel que : $\log_2(2^n) = n$
- De façon analogue, le logarithme en base 10 vérifie : $\log_{10}(10^n) = n$
- « Le logarithme est aussi lent que l'exponentielle est rapide »

COMPARAISONS ENTRE FONCTIONS

n	n^2	n^3	n^{10}	2^n	$\log_{10}(n)$
1	1	1	1	2	0
2	4	8	1024	4	0,30103
3	9	27	59049	8	0,47712125
4	16	64	1048576	16	0,60205999
5	25	125	9765625	32	0,69897
10	100	1000	1E+10	1024	1
20	400	8000	1,024E+13	1048576	1,30103
50	2500	125000	9,7656E+16	1,1259E+15	1,69897
100	10000	1000000	1E+20	1,2677E+30	2
500	250000	125000000	9,7656E+26	3,273E+150	2,69897
1000	1000000	1000000000	1E+30	1,072E+301	3

Notation: $xE+k = x \times 10^k$

COMPARAISONS ENTRE FONCTIONS



Une simple feuille de papier

- On prend une feuille de papier très grande.
- Quelle épaisseur obtient-on si on la plie 42 fois ? Plus que la distance Terre-Lune!
 - Distance Terre-Lune : 384 467 km, soit environ 3.8×10^8 m
 - Epaisseur d'une feuille de papier : un peu plus de 10^{-4} m

•
$$10^{-4} \times \underbrace{2 \times 2 \times \cdots \times 2}_{42 \text{ fois}} = 10^{-4} \times 2^{42} \approx 4.4 \times 10^{8}$$

• Et si on la plie 51 fois?

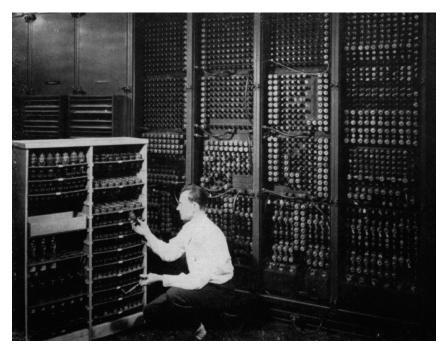
Plus que la distance Terre-Soleil!

- Distance Terre-Soleil : 149 597 870 km, soit environ 1.5×10^{11} m
- $10^{-4} \times \underbrace{2 \times 2 \times \cdots \times 2}_{51 \text{ fois}} = 10^{-4} \times 2^{51} \approx 2.3 \times 10^{11}$

DÉFINITIONS ET NOTATIONS

PETIT VOYAGE DANS LE TEMPS

Qu'est-ce que c'est ?

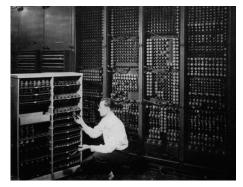


- Le premier ordinateur entièrement électronique
 - Date de présentation au public : 1946
 - Electronic Numerical Integrator Analyser and Computer (ENIAC)

PETIT VOYAGE DANS LE TEMPS

- Caractéristiques
 - Dimensions : 2,4 x 0,9 x 30,5 mètres
 - Superficie : 167 m² (presque la taille d'un terrain de tennis)
 - Poids: 30 tonnes
 - Consommation électrique : 150 kilowatts (plusieurs dizaines de foyers)
- Composant principal : le tube à vide
 - Cause la plus fréquente de pannes : les insectes (bug en anglais)
 - Plus longue période de calcul sans panne : 116 heures (en 1954)
- Temps de calcul

	Multiplication de nombres à 10 chiffres	Calcul d'une trajectoire de tir	
Calcul manuel	Plusieurs minutes	2,6 jours	
ENIAC	0,001 s	3 s	
Ordinateur de bureau des années 2000	30 ns	36 µs	



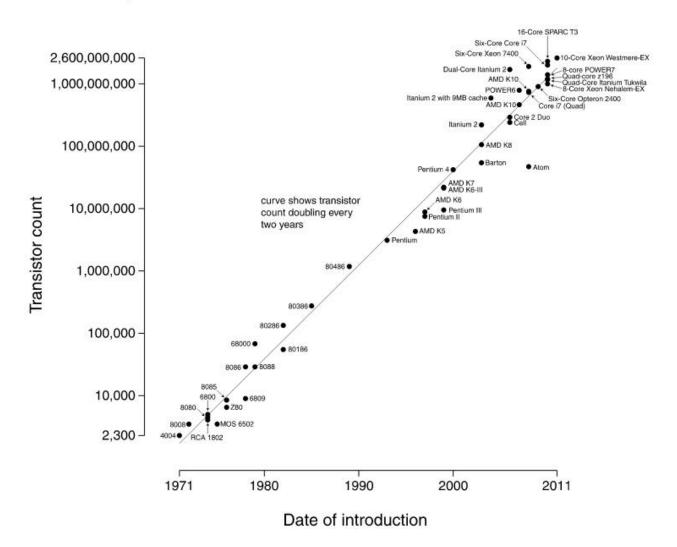
- Gordon Earle Moore, un des trois fondateurs d'Intel
- Première loi de Moore (1965)

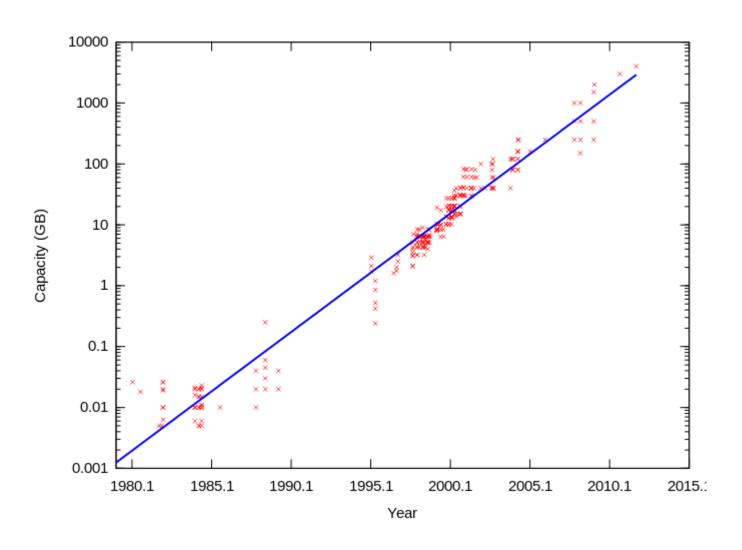
La complexité des semi-conducteurs proposés en entrée de gamme double tous les ans à cout constant

Seconde loi de Moore (1975)

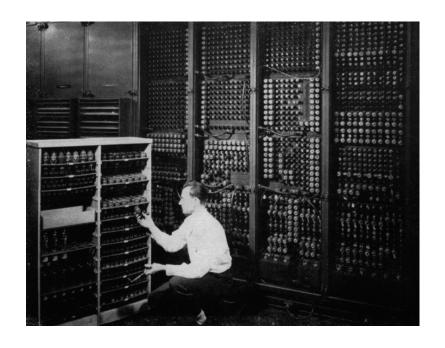
Le nombre de transistors des microprocesseurs double tous les deux ans

Microprocessor Transistor Counts 1971-2011 & Moore's Law





• Conséquence : Compter en combien de temps s'exécute un programme n'a pas vraiment de sens.



• Question : Combien aurait couté un iPhone 5S s'il avait été produit en 1991 ? Au moins 3,5 millions de dollars (2,6 millions d'euros)

- Mémoire
 - Cout d'un disque dur d'1 Go en 1991 : 10 000 dollars
 - Cout d'1 Go de mémoire Flash : 45 000 dollars
 - Cout de 32 Go de mémoire Flash : 1,4 millions dollars
- Processeur
 - Cout du millions d'instructions par secondes (MIPS) : 30 dollars
 - MIPS du microprocesseur l'iPhone 5S : 20 000
 - Cout du microprocesseur : 600 000 dollars
- Connectivité et Bande passante
 - Cout pour un kilo-octet par seconde : 100 dollars
 - Capacité d'un iPhone 5S : plus de 15 Mo/s
 - Cout de la connectivité et bande passante : 1,5 millions de dollars
- A l'époque, cette technologie n'aurait pas tenu dans un réfrigérateur

Une limite de la loi de Moore

- En 2016, on est capable de produire des composants de seulement 14 nanomètres, voire un peu moins
- D'ici 2020, on aura peut-être atteint 2 ou 3 nanomètres.
- Il devient difficile de réduire ainsi la taille des transistors :
 - 2 à 3 nanomètres, c'est la taille d'une dizaine d'atomes
 - Cela devient très couteux
 - On entre alors dans le domaine de la physique quantique
- On est sans doute en train de se heurter à une limite de la loi de Moore, mais d'autres pistes d'innovation existent
 - Des matériaux moins couteux, plus « propres »
 - D'autres axes de réflexions possibles

RAPIDITÉ D'EXÉCUTION D'UN PROGRAMME

 Constat : Compter en combien de temps s'exécute un programme n'a pas vraiment de sens, mais certains programmes sont plus « rapides » que d'autres.

Voici deux programmes :

```
def prog1():
    total = 0
    for i in range(10000000):
        total = total + 1
        total = total + 1
        return total
def prog2():
    total = 0
    for i in range(10):
        total = total + 1000000
    return total
```

 Quelque soit la machine utilisée, le second est un million de fois plus rapide que le premier.

DÉFINITION

- La **complexité en temps** d'un programme est
 - Une estimation du temps qu'il met à s'exécuter
 - En fonction de la taille des arguments passés en entrée
 - A une constante près
- La complexité en mémoire d'un programme est
 - Une estimation de l'espace dont il a besoin pour s'exécuter
 - En fonction de la taille des arguments passés en entrée
 - A une constante près
- Remarque : On se concentrera dans un premier temps sur la complexité en temps.

"EN FONCTION DE LA TAILLE DES ARGUMENTS"

Exemple

```
def programmeIdiot1(n):
   x = 1
                                 Linéaire
   for i in range(n):
      x = 2
   return x
def programmeIdiot2(n):
                                 Quadratique
   x = 1
   for i in range (n*n):
      x = 2
   return x
def programmeIdiot3(n):
                                 Constant
   x = 1
   for i in range(2):
      x = 2
   return x
```

EXÉCUTION EN TEMPS CONSTANT

 On dit qu'une opération s'exécute en temps constant quand elle s'exécute toujours dans le même temps, quelque soit la taille de l'entrée :

Temps de calcul(n)
$$\approx$$
 Constante

 Remarque : on considère que la plupart des opérations de base d'un langage de programmation sont en temps constant.

Exemples :

- Comparer deux nombres
- Afficher un nombre
- Récupérer la valeur d'une variable

• Notation : O(1)

COMPLEXITÉ LINÉAIRE

• On dit qu'un algorithme a une complexité linéaire quand il s'exécute dans un temps proportionnel à la taille de l'entrée : $Temps\ de\ calcul(n)\ \approx\ Constante\ \times\ n$

- Exemples :
 - *n*
 - $10000 \times n$
 - $\frac{n}{2}$
- Notation : O(n)

COMPLEXITÉ QUADRATIQUE

• On dit qu'un algorithme a une **complexité quadratique** quand il s'exécute dans un temps proportionnel au carré de la taille de l'entrée :

Temps de calcul(n)
$$\approx$$
 Constante \times n²

- Exemples :
 - n^2
 - $10 \times n^2$
 - $\frac{n^2}{1000000}$
- Notation : $O(n^2)$

COMPLEXITÉ POLYNOMIALE

• On dit qu'un algorithme a une complexité polynomiale quand il s'exécute dans un temps proportionnel à une puissance de la taille de l'entrée :

Temps de calcul(n)
$$\approx$$
 Constante \times n^k (k ne dépendant pas de n)

- Exemples :
 - n^5
 - n^2
 - n
- Notation : $O(n^k)$

COMPLEXITÉ EXPONENTIELLE

 On dit qu'un algorithme a une complexité exponentielle quand il s'exécute dans un temps qui augmente exponentiellement avec la taille de l'entrée, ce qui peut s'écrire :

Temps de calcul(n)
$$\approx$$
 Constante \times k^n (k ne dépendant pas de n)

- Exemple :
 - 2^n : le temps de calcul double chaque fois que n augmente de 1
- Notation : $O(2^n)$

COMPLEXITÉ LOGARITHMIQUE

• On dit qu'un algorithme a une complexité logarithmique quand il s'exécute dans un temps proportionnel au logarithme de la taille de l'entrée :

Temps de calcul(n) \approx Constante $\times \log(n)$

• Notation : $O(\log(n))$

RAPPEL: TABLEAU DES COMPARAISONS

n	n^2	n^3	n^{10}	2 ⁿ	$\log_{10}(n)$
1	1	1	1	2	0
2	4	8	1024	4	0,30103
3	9	27	59049	8	0,47712125
4	16	64	1048576	16	0,60205999
5	25	125	9765625	32	0,69897
10	100	1000	1E+10	1024	1
20	400	8000	1,024E+13	1048576	1,30103
50	2500	125000	9,7656E+16	1,1259E+15	1,69897
100	10000	1000000	1E+20	1,2677E+30	2
500	250000	125000000	9,7656E+26	3,273E+150	2,69897
1000	1000000	1000000000	1E+30	1,072E+301	3

 Meilleure sera la complexité, plus on pourra traiter des entrées de taille importante

EXEMPLES SIMPLES

Exemple 1: Afficher les nombre de 1 à n

• **But** : Ecrire un programme qui prend en entrée un entier n, qui affiche la liste des entiers entre 1 et n, et ne renvoie rien.

Exemple :

```
exemple1(5)
1
2
3
```

4

5

Exemple 1: Afficher les nombre de 1 à n

• Code:

• Complexité : O(n)

EXEMPLE 2: TABLE DE MULTIPLICATION

• **But** : Ecrire un programme qui prend en entrée un entier n, qui affiche une table de multiplication avec n lignes et n colonnes.

• Exemple :

```
exemple2(4)

1 2 3 4
2 4 6 8
3 6 9 12
4 8 12 16
```

EXEMPLE 2: TABLE DE MULTIPLICATION

• Code:

• Complexité : $O(n^2)$

COMPLEXITÉ ET RÉCURSIVITÉ

RAPPEL: FONCTION RÉCURSIVE

 Définition : Une fonction récursive est une fonction qui s'appelle elle-même

Modèle classique :

```
def f(n):
    if (n==0):
        # Renvoyer une valeur
    else:
        resultatAppelRecursif = f(n-1)
        g(resultatAppelRecursif)
```

EXEMPLE SIMPLE: LA FACTORIELLE

Définition : La fonction factorielle est définie par

$$n! = factorielle(n) = \begin{cases} 1 & si \ n = 0 \\ 1 \times 2 \times \dots \times n & si \ n > 0 \end{cases}$$

Définition récursive :

$$n! = factorielle(n) = \begin{cases} 1 & si \ n = 0 \\ factorielle(n-1) \times n & si \ n > 0 \end{cases}$$

- Remarques :
 - n! est plus rapide que n^k
 - n! est plus rapide que 2^n

EXEMPLE SIMPLE: LA FACTORIELLE

• Définition récursive :

$$n! = factorielle(n) = \begin{cases} 1 & si \ n = 0 \\ factorielle(n-1) \times n & sinon \end{cases}$$

• En Python:

```
def fact(n):
    if (n==0):
        return 1
    else:
        return n*fact(n-1)
```

EXEMPLE SIMPLE: LA FACTORIELLE

• En Python:

```
def fact(n):
    if (n==0):
        return 1
    else
        return n*fact(n-1)
```

Analyse

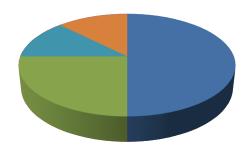
- Notons C(n) le nombre d'opération élémentaires effectuées dans le calcul de fact (n)
- C(0) = 2 (un test et le renvoi d'une valeur)
- Si n > 0, C(n) = 3 + C(n-1) (un test, une multiplication, et un renvoi)
- C(n) = 3 + 3 + C(n-2) = 3 + 3 + ... + C(0) = 3n + 2
- Complexité : O(n)

Rappelez-vous...

- Donnez moi un chiffre entre 1 et 1 000
- Je vous le retrouve en 10 questions binaires (oui non)

Principe :

A chaque étape, on divise par deux la taille de l'intervalle de recherche.



Questions posées	0	1	2	3	4	5	6	7	8	9	10
Intervalle	1024	512	256	128	64	32	16	8	4	2	1

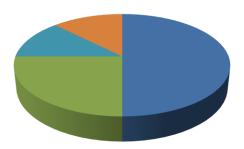
• En pseudo-code :

```
TrouverNombreMystere(min, max) =
   Si (min = max)
   Alors
      La réponse est min
   Sinon
      milieu = (min+max)/2
      Si (nombreMystere ≤ milieu)
      Alors
         TrouverNombreMystere (min, milieu)
      Sinon
         TrouverNombreMystere (milieu+1, max)
   Fin Si
```

Question : Quelle est la complexité de ce programme ?

• Remarque : On peut supposer d'abord que n est une puissance de 2 : $n=2^k$

• Réponse : Le temps de calcul est proportionnel à k, et donc à $\log_2(n)$



EXERCICES

RECHERCHE DANS UN VECTEUR

• Question : Quelle est la complexité d'un algorithme qui recherche si un élément x appartient à une liste v ?

Algorithme :

• Remarque : sauf indication contraire, on s'intéresse toujours à la complexité dans le pire des cas

SUPPRIMER LES DOUBLONS

- Question : Quelle est la complexité d'un algorithme :
 - Prenant en argument une liste d'entiers 1
 - Renvoyant une liste 12 correspondant à 1 sans doublons
- Algorithme :

LE PLUS LONG PALINDROME

 Définition : Un palindrome est une chaîne de caractères qu'on peut lire de gauche à droite ou de droite à gauche.

Exemples :

- "Bob"
- "Kayak"
- "La mariée ira mal"
- "Zeus a été à Suez"
- "Engage le jeu que je le gagne" (Alain Damasio, la Horde du Contrevent)
- But : Ecrire une fonction qui prend en argument une chaîne de caractère et qui renvoie le plus long palindrome qu'elle contient.

TRI PAR SÉLECTION

Principe

- On trouve le plus grand élément de la liste l[0...n-1]
- On le met dans la dernière case
- On trouve le plus grand élément de la sous-liste l[0...n-2]
- On le met dans l'avant dernière case
- Etc.

But

- Implémentez cette méthode
- Déduisez-en sa complexité

Fonction auxiliaire à écrire

Trouver l'indice du maximum d'un sous-liste

TRI PAR SÉLECTION

• Trouver l'indice du maximum :

• Complexité : O(n)

TRI PAR SÉLECTION

Tri par insertion

• Complexité : $O(n^2)$

TRI À BULLES

Principe

- On parcourt la liste du début à la fin
- Si on a l [i] > l [i+1], alors on inverse ces deux éléments (l [i] "remonte")
- Si on arrive à la fin de la liste sans qu'il y ait d'échange, c'est que la liste est triée
- Sinon on refait un passage
- Etc.

But

- Implémentez cette méthode
- Déduisez-en sa complexité

TRI PAR INSERTION

Aussi appelé « tri du joueur de cartes »

Principe

- Le joueur a dans sa main des cartes déjà triées
- Il reçoit une nouvelle carte
- Il l'insère au bon endroit dans sa main
- Il reçoit une nouvelle carte
- etc.

But

- Implémentez cette méthode
- Déduisez-en sa complexité

PROCHAINE SÉANCE

Vendredi 8 avril

TRIS ET COMPLEXITÉ

n n^2 $n \times \log n$